
TCS 502 Compiler Designp g

CS416 Compiler Design 1P K Singh

Course Information

Textbook:
Alfred V Aho Ravi Sethi and Jeffrey D UllmanAlfred V. Aho, Ravi Sethi, and Jeffrey D. Ullman,
“Compilers: Principles, Techniques, and Tools”
Addison-Wesley, 1986.Addison Wesley, 1986.

• Course Web Page: http://pksmmmec.googlepages.com

CS416 Compiler Design 2P K Singh

Preliminaries Required
• Basic knowledge of programming languages.
• Basic knowledge of FSA and CFGBasic knowledge of FSA and CFG.
• Knowledge of a high programming language for the

programming assignments.

CS416 Compiler Design 3P K Singh

Course Outline
• Introduction to Compiling
• Lexical Analysisy
• Syntax Analysis

– Context Free GrammarsContext Free Grammars
– Top-Down Parsing, LL Parsing
– Bottom-Up Parsing, LR Parsingp g g

CS416 Compiler Design 4P K Singh

Course Outline
• Syntax-Directed Translation

– Attribute Definitions
– Evaluation of Attribute Definitions

• Semantic Analysis, Type Checking
• Run-Time Organization
• Intermediate Code GenerationIntermediate Code Generation
• Code Optimization

P K Singh CS416 Compiler Design 5

COMPILERS
• A compiler is a program takes a program written in a source

language and translates it into an equivalent program in a target g g q p g g
language.

source program COMPILER target program
(ll i i (ll h i l i

error messages

(Normally a program written in
a high-level programming language)

(Normally the equivalent program in
machine code – relocatable object file)

error messages

CS416 Compiler Design 6P K Singh

Major Parts of Compilers

• There are two major parts of a compiler: Analysis and
SynthesisSynthesis

• In analysis phase an intermediate representation is• In analysis phase, an intermediate representation is
created from the given source program.
– Lexical Analyzer, Syntax Analyzer and Semantic Analyzer are the parts of y y y y p

this phase.

• In synthesis phase, the equivalent target program is
t d f thi i t di t t ticreated from this intermediate representation.

– Intermediate Code Generator, Code Generator, and Code Optimizer are
the parts of this phase.

CS416 Compiler Design 7P K Singh

Phases of A Compiler

Lexical
Analyzer

Semantic
Analyzer

Syntax
Analyzer

Intermediate
Code Generator

Code
Optimizer

Code
Generator

Target
Program

Source
Program

• Each phase transforms the source program from one representation p p g p
into another representation.

• They communicate with error handlers• They communicate with error handlers.

• They communicate with the symbol table.

CS416 Compiler Design 8P K Singh

Lexical Analyzer
• Lexical Analyzer reads the source program character by

character and returns the tokens of the source program.
• A token describes a pattern of characters having same meaning

in the source program. (such as identifiers, operators, keywords,
numbers, delimeters and so on),)
Ex: newval := oldval + 12 => tokens: newval identifier

:= assignment operator
oldval identifier
+ add operator
12 a number

• Puts information about identifiers into the symbol table.u s o a o abou de e s o e sy bo ab e
• Regular expressions are used to describe tokens (lexical

constructs).
A (Deterministic) Finite State Automaton can be used in the

CS416 Compiler Design 9

• A (Deterministic) Finite State Automaton can be used in the
implementation of a lexical analyzer.

P K Singh

Syntax Analyzer
• A Syntax Analyzer creates the syntactic structure (generally a

parse tree) of the given program.p) g p g
• A syntax analyzer is also called as a parser.
• A parse tree describes a syntactic structure.

assgstmt

identifier := expression • In a parse tree, all terminals are at leaves.

newval expression + expression

id tifi b

p ,

• All inner nodes are non-terminals in
a context free grammar.

identifier number

oldval 12

CS416 Compiler Design 10P K Singh

Syntax Analyzer (CFG)
• The syntax of a language is specified by a context free

grammar (CFG).g ()
• The rules in a CFG are mostly recursive.
• A syntax analyzer checks whether a given program satisfies the

rules implied by a CFG or not.
– If it satisfies, the syntax analyzer creates a parse tree for the given program.

• Ex: We use BNF (Backus Naur Form) to specify a CFG

assgstmt -> identifier := expression
expression -> identifier
expression -> number
expression -> expression + expression

CS416 Compiler Design 11P K Singh

Syntax Analyzer versus Lexical Analyzer
• Which constructs of a program should be recognized by the

lexical analyzer, and which ones by the syntax analyzer?y , y y y
– Both of them do similar things; But the lexical analyzer deals with simple non-

recursive constructs of the language.
– The syntax analyzer deals with recursive constructs of the language.
– The lexical analyzer simplifies the job of the syntax analyzer.
– The lexical analyzer recognizes the smallest meaningful units (tokens) in a source

program.
– The syntax analyzer works on the smallest meaningful units (tokens) in a source

program to recognize meaningful structures in our programming language.

CS416 Compiler Design 12P K Singh

Parsing Techniques
• Depending on how the parse tree is created, there are different

parsing techniques.
These parsing techniques are categorized into two groups:• These parsing techniques are categorized into two groups:
– Top-Down Parsing,
– Bottom-Up Parsingp g

• Top-Down Parsing:
– Construction of the parse tree starts at the root, and proceeds towards the leaves.
– Efficient top-down parsers can be easily constructed by hand.Efficient top down parsers can be easily constructed by hand.
– Recursive Predictive Parsing, Non-Recursive Predictive Parsing (LL Parsing).

• Bottom-Up Parsing:
– Construction of the parse tree starts at the leaves and proceeds towards the rootConstruction of the parse tree starts at the leaves, and proceeds towards the root.
– Normally efficient bottom-up parsers are created with the help of some software

tools.
– Bottom-up parsing is also known as shift-reduce parsing.

CS416 Compiler Design 13

– Operator-Precedence Parsing – simple, restrictive, easy to implement
– LR Parsing – much general form of shift-reduce parsing, LR, SLR, LALR

P K Singh

Semantic Analyzer
• A semantic analyzer checks the source program for semantic

errors and collects the type information for the code generation.yp g
• Type-checking is an important part of semantic analyzer.
• Normally semantic information cannot be represented by a

context-free language used in syntax analyzers.
• Context-free grammars used in the syntax analysis are integrated

with attributes (semantic rules)with attributes (semantic rules)
– the result is a syntax-directed translation,
– Attribute grammars

E• Ex:
newval := oldval + 12

Th t f th id tifi l t t h ith t f th i (ld l 12)

CS416 Compiler Design 14

• The type of the identifier newval must match with type of the expression (oldval+12)

P K Singh

Intermediate Code Generation
• A compiler may produce an explicit intermediate codes

representing the source program.p g p g
• These intermediate codes are generally machine (architecture

independent). But the level of intermediate codes is close to the
le el of machine codeslevel of machine codes.

• Ex:
newval := oldval * fact + 1

id1 := id2 * id3 + 1

MULT id2,id3,temp1 Intermediates Codes (Quadraples)
ADD temp1,#1,temp2
MOV temp2,,id1

CS416 Compiler Design 15

p ,,

P K Singh

Code Optimizer (for Intermediate Code Generator)
• The code optimizer optimizes the code produced by the

intermediate code generator in the terms of time and space.g p

• Ex:

MULT id2,id3,temp1
ADD temp1,#1,id1ADD temp1,#1,id1

CS416 Compiler Design 16P K Singh

Code Generator
• Produces the target language in a specific architecture.
• The target program is normally is a relocatable object fileThe target program is normally is a relocatable object file

containing the machine codes.

• Ex:
(assume that we have an architecture with instructions whose at least one of its operands

isis
a machine register)

MOVE id2 R1MOVE id2,R1
MULT id3,R1
ADD #1,R1
MOVE R1 id1

CS416 Compiler Design 17

MOVE R1,id1

P K Singh

