TCS 502 Compiler Design

CS416 Compiler Design

Course Information

Textbook:
Alfred V. Aho, Ravi Sethi, and Jeffrey D. Uliman,
“Compilers: Principles, Techniques, and Tools”
Addison-Wesley, 1986.

« Course Web Page: http://[pksmmmec.googlepages.com

P K Singh CS416 Compiler Design

Preliminaries Required

e Basic knowledge of programming languages.
« Basic knowledge of FSA and CFG.

« Knowledge of a high programming language for the
programming assignments.

P K Singh CS416 Compiler Design

Course Outline
 Introduction to Compiling
e Lexical Analysis

o Syntax Analysis

— Context Free Grammars
— Top-Down Parsing, LL Parsing
— Bottom-Up Parsing, LR Parsing

P K Singh CS416 Compiler Design

o Syntax-Directed Translation
— Attribute Definitions
— Evaluation of Attribute Definitions

o Semantic Analysis, Type Checking
 Run-Time Organization

* Intermediate Code Generation

e Code Optimization

P K Singh CS416 Compiler Design

COMPILERS

« A compiler is a program takes a program written in a source
language and translates it into an equivalent program in a target
language.

source program —{ COMPILER [— target program

(Normally a program written in (Normally the equivalent program in
a high-level programming language) machine code — relocatable object file)

error messages

P K Singh CS416 Compiler Design 6

Major Parts of Compilers

e There are two major parts of a compiler: Analysis and
Synthesis

e In analysis phase, an intermediate representation is

created from the given source program.

— Lexical Analyzer, Syntax Analyzer and Semantic Analyzer are the parts of
this phase.

* In synthesis phase, the equivalent target program is

created from this intermediate representation.

— Intermediate Code Generator, Code Generator, and Code Optimizer are
the parts of this phase.

P K Singh CS416 Compiler Design

Phases of A Compiler

Lexical Syntax ~ Semantic Intermediate Code Code Target
source __, —> —»> — —> . . > —_—
Program Analyzer Analyzer Analyzer Code Generator Optimizer Generator Program

 Each phase transforms the source program from one representation
Into another representation.

» They communicate with error handlers.

* They communicate with the symbol table.

P K Singh CS416 Compiler Design

 Lexical Analyzer reads the source program character by
character and returns the tokens of the source program.

« A token describes a pattern of characters having same meaning
INn the source program. (such as identifiers, operators, keywords,
numbers, delimeters and so on)

EX: newval := oldval + 12 => tokens: newval identifier
= assignment operator
oldval identifier
+ add operator
12 a number

Puts information about identifiers into the symbol table.
Regular expressions are used to describe tokens (lexical
constructs).

A (Deterministic) Finite State Automaton can be used in the
Implementation of a lexical analyzer.

P K Singh CS416 Compiler Design

Syntax Analyzer

A Syntax Analyzer creates the syntactic structure (generally a
parse tree) of the given program.

A syntax analyzer is also called as a parser.
A parse tree describes a syntactic structure.

P K Singh

identifier

newval

assgstmt
= eXpression Ina parse tree, all terminals are at leaves.
expression + expression * All inner nodes are non-terminals in
a context free grammar.
identifier number

oldval 12

CS416 Compiler Design 10

Syntax Analyzer (CFG)

 The syntax of a language is specified by a context free
grammar (CFG).

 The rules in a CFG are mostly recursive.

* A syntax analyzer checks whether a given program satisfies the
rules implied by a CFG or not.

— If it satisfies, the syntax analyzer creates a parse tree for the given program.

e EX: we use BNF (Backus Naur Form) to specify a CFG

assgstmt -> identifier := expression
expression -> identifier

expression -> number

expression -> expression + expression

P K Singh CS416 Compiler Design

Syntax Analyzer versus Lexical Analyzer

* Which constructs of a program should be recognized by the
lexical analyzer, and which ones by the syntax analyzer?

P K Singh

Both of them do similar things; But the Iexical analyzer deals with simple non-
recursive constructs of the language.

The syntax analyzer deals with recursive constructs of the language.
The lexical analyzer simplifies the job of the syntax analyzer.

The lexical analyzer recognizes the smallest meaningful units (tokens) in a source
program.

The syntax analyzer works on the smallest meaningful units (tokens) in a source
program to recognize meaningful structures in our programming language.

CS416 Compiler Design

12

Parsing Techniques

Depending on how the parse tree is created, there are different
parsing techniques.

These parsing techniques are categorized into two groups:
— Top-Down Parsing,

— Bottom-Up Parsing

Top-Down Parsing:

Construction of the parse tree starts at the root, and proceeds towards the leaves.
Efficient top-down parsers can be easily constructed by hand.
Recursive Predictive Parsing, Non-Recursive Predictive Parsing (LL Parsing).

Bottom-Up Parsing:

P K Singh

Construction of the parse tree starts at the leaves, and proceeds towards the root.

Normally efficient bottom-up parsers are created with the help of some software
tools.

Bottom-up parsing is also known as shift-reduce parsing.
Operator-Precedence Parsing — simple, restrictive, easy to implement
LR Parsing — much general form of shift-reduce parsing, LR, SLR, LALR

CS416 Compiler Design

A semantic analyzer checks the source program for semantic
errors and collects the type information for the code generation.

» Type-checking is an important part of semantic analyzer.

 Normally semantic information cannot be represented by a
context-free language used Iin syntax analyzers.

o Context-free grammars used in the syntax analysis are integrated
with attributes (semantic rules)

— the result is a syntax-directed translation,
— Attribute grammars

e EX:

newval := oldval + 12
* The type of the identifier newval must match with type of the expression (oldval+12)

P K Singh CS416 Compiler Design 14

Intermediate Code Generation

« A compiler may produce an explicit intermediate codes
representing the source program.

 These intermediate codes are generally machine (architecture

Independent). But the level of intermediate codes is close to the
level of machine codes.

e EX:
newval := oldval * fact+ 1

'
id1 o= id2*id3 + 1

|

MULT id2,id3,templ Intermediates Codes (Quadraples)
ADD templ,#1,temp2
MOV temp2,,idl

P K Singh CS416 Compiler Design 15

Code Optimizer (for' Intermediate Code Gener'a'l'or')

 The code optimizer optimizes the code produced by the
Intermediate code generator in the terms of time and space.

e EX:

MULT id2,id3,templ
ADD templ,#1,idl

P K Singh CS416 Compiler Design

16

Code Generator

* Produces the target language in a specific architecture.

e The target program is normally is a relocatable object file
containing the machine codes.

e EX:

(assume that we have an architecture with instructions whose at least one of its operands

a machine register)

MOVE 1d2,R1
MULT 1d3,R1
ADD #1,R1
MOVE R1,id1

P K Singh CS416 Compiler Design

