

MCA 202/MS 11

Author: Abhishek Taneja Vetter: Sh. Dharminder Kumar
Lesson: Introduction Lesson No. : 01

Structure
1.0 Objectives
1.1 Introduction
1.2 Data Processing Vs. Data Management Systems
1.3 File Oriented Approach
1.4 Database Oriented Approach to Data Management
1.5 Characteristics of Database
1.6 Advantages and Disadvantages of a DBMS
1.7 Instances and Schemas
1.8 Data Models
1.9 Database Languages
1.9 Data Dictionary
1.11 Database Administrators and Database Users
1.12 DBMS Architecture and Data Independence
1.13 Types of Database System
1.14 Summary
1.15 keywords
1.16 Self Assessment Questions (SAQ)
1.17 References/Suggested Readings

1.0 Objectives
At the end of this chapter the reader will be able to:

• Distinguish between data and information and Knowledge
• Distinguish between file processing system and DBMS
• Describe DBMS its advantages and disadvantages
• Describe Database users including data base administrator
• Describe data models, schemas and instances.
• Describe DBMS Architecture & Data Independence
• Describe Data Languages

 1

1.1 Introduction

A database-management system (DBMS) is a collection of interrelated data and a set of

programs to access those data. This is a collection of related data with an implicit

meaning and hence is a database. The collection of data, usually referred to as the

database, contains information relevant to an enterprise. The primary goal of a DBMS is

to provide a way to store and retrieve database information that is both convenient and

efficient. By data, we mean known facts that can be recorded and that have implicit

meaning. For example, consider the names, telephone numbers, and addresses of the

people you know. You may have recorded this data in an indexed address book, or you

may have stored it on a diskette, using a personal computer and software such as DBASE

IV or V, Microsoft ACCESS, or EXCEL. A datum – a unit of data – is a symbol or a set

of symbols which is used to represent something. This relationship between symbols and

what they represent is the essence of what we mean by information. Hence, information

is interpreted data – data supplied with semantics. Knowledge refers to the practical use

of information. While information can be transported, stored or shared without many

difficulties the same can not be said about knowledge. Knowledge necessarily involves a

personal experience. Referring back to the scientific experiment, a third person reading

the results will have information about it, while the person who conducted the experiment

personally will have knowledge about it.

Database systems are designed to manage large bodies of information. Management of

data involves both defining structures for storage of information and providing

mechanisms for the manipulation of information. In addition, the database system must

ensure the safety of the information stored, despite system crashes or attempts at

unauthorized access. If data are to be shared among several users, the system must avoid

possible anomalous results.

Because information is so important in most organizations, computer scientists have

developed a large body of concepts and techniques for managing data. These concepts

and technique form the focus of this book. This chapter briefly introduces the principles

of database systems.

 2

1.2 Data Processing Vs. Data Management Systems

Although Data Processing and Data Management Systems both refer to functions that

take raw data and transform it into usable information, the usage of the terms is very

different. Data Processing is the term generally used to describe what was done by large

mainframe computers from the late 1940's until the early 1980's (and which continues to

be done in most large organizations to a greater or lesser extent even today): large

volumes of raw transaction data fed into programs that update a master file, with fixed-

format reports written to paper.

The term Data Management Systems refers to an expansion of this concept, where the

raw data, previously copied manually from paper to punched cards, and later into data-

entry terminals, is now fed into the system from a variety of sources, including ATMs,

EFT, and direct customer entry through the Internet. The master file concept has been

largely displaced by database management systems, and static reporting replaced or

augmented by ad-hoc reporting and direct inquiry, including downloading of data by

customers. The ubiquity of the Internet and the Personal Computer have been the driving

force in the transformation of Data Processing to the more global concept of Data

Management Systems.

1.3 File Oriented Approach

The earliest business computer systems were used to process business records and

produce information. They were generally faster and more accurate than equivalent

manual systems. These systems stored groups of records in separate files, and so they

were called file processing systems. In a typical file processing systems, each

department has its own files, designed specifically for those applications. The department

itself working with the data processing staff, sets policies or standards for the format and

maintenance of its files.

Programs are dependent on the files and vice-versa; that is, when the physical format of

the file is changed, the program has also to be changed. Although the traditional file

oriented approach to information processing is still widely used, it does have some very

important disadvantages.

1.4 Database Oriented Approach to Data Management

 3

Consider part of a savings-bank enterprise that keeps information about all customers and

savings accounts. One way to keep the information on a computer is to store it in

operating system files. To allow users to manipulate the information, the system has a

number of application programs that manipulate the files, including

 A program to debit or credit an account

 A program to add a new account

 A program to find the balance of an account

 A program to generate monthly statements

System programmers wrote these application programs to meet the needs of the bank.

New application programs are added to the system as the need arises. For example,

suppose that the savings bank decides to offer checking accounts. As a result, the bank

creates new permanent files that contain information about all the checking accounts

maintained in the bank, and it may have to write new application programs to deal with

situations that do not arise in savings accounts, such as overdrafts. Thus, as time goes by,

the system acquires more files and more application programs.

This typical file-processing system is supported by a conventional operating system. The

system stores permanent records in various files, and it needs different application

programs to extract records from, and add records to, the appropriate files. Before

database management systems (DBMSs) came along, organizations usually stored

information in such systems.

Keeping organizational information in a file-processing system has a number of major

disadvantages:

 Data redundancy and inconsistency.

 Since different programmers create the files and application programs over a long

period, the various files are likely to have different formats and the programs may be

written in several programming languages. Moreover, the same information may be

duplicated in several places (files). For example, the address and telephone number of a

particular customer may appear in a file that consists of savings-account records and in a

file that consists of checking-account records. This redundancy leads to higher storage

and access cost. In addition, it may lead to data inconsistency; that is, the various copies

 4

of the same data may no longer agree. For example, a changed customer address may be

reflected in savings-account records but not elsewhere in the system.

Difficulty in accessing data.

 Suppose that one of the bank officers needs to find out the names of all customers who

live within a particular postal-code area. The officer asks the data-processing department

to generate such a list. Because the designers of the original system did not anticipate this

request, there is no application program on hand to meet it. There is, however, an

application program to generate the list of all customers. The bank officer has now two

choices: either obtain the list of all customers and extract the needed information

manually or ask a system programmer to write the necessary application program. Both

alternatives are obviously unsatisfactory. Suppose that such a program is written, and

that, several days later, the same officer needs to trim that list to include only those

customers who have an account balance of $10,000 or more. As expected, a program to

generate such a list does not exist. Again, the officer has the preceding two options,

neither of which is satisfactory.

The point here is that conventional file-processing environments do not allow needed

data to be retrieved in a convenient and efficient manner. More responsive data-retrieval

systems are required for general use.

Data isolation. Because data are scattered in various files, and files may be in different

formats, writing new application programs to retrieve the appropriate data is difficult.

 Integrity problems. The data values stored in the database must satisfy certain types of

consistency constraints. For example, the balance of a bank account may never fall

below a prescribed amount (say, $25). Developers enforce these constraints in the system

by adding appropriate code in the various application programs. However, when new

constraints are added, it is difficult to change the programs to enforce them. The problem

is compounded when constraints involve several data items from different files.

 Atomicity problems. A computer system, like any other mechanical or electrical

device, is subject to failure. In many applications, it is crucial that, if a failure occurs, the

data be restored to the consistent state that existed prior to the failure. Consider a program

to transfer $50 from account A to account B. If a system failure occurs during the

execution of the program, it is possible that the $50 was removed from account A but was

 5

not credited to account B, resulting in an inconsistent database state. Clearly, it is

essential to database consistency that either both the credit and debit occur, or that neither

occur. That is, the funds transfer must be atomic—it must happen in its entirety or not at

all. It is difficult to ensure atomicity in a conventional file-processing system.

 Concurrent-access anomalies. For the sake of overall performance of the system

and faster response, many systems allow multiple users to update the data

simultaneously. In such an environment, interaction of concurrent updates may result in

inconsistent data. Consider bank account A, containing $500. If two customers withdraw

funds (say $50 and $100 respectively) from account A at about the same time, the result

of the concurrent executions may leave the account in an incorrect (or inconsistent) state.

Suppose that the programs executing on behalf of each withdrawal read the old balance,

reduce that value by the amount being withdrawn, and write the result back. If the two

programs run concurrently, they may both read the value $500, and write back $450 and

$400, respectively. Depending on which one writes the value last, the account may

contain either $450 or $400, rather than the correct value of $350. To guard against this

possibility, the system must maintain some form of supervision. But supervision is

difficult to provide because data may be accessed by many different application programs

that have not been coordinated previously.

 Security problems. Not every user of the database system should be able to access all

the data. For example, in a banking system, payroll personnel need to see only that part of

the database that has information about the various bank employees. They do not need

access to information about customer accounts. But, since application programs are

added to the system in an ad hoc manner, enforcing such security constraints is difficult.

These difficulties, among others, prompted the development of database systems. In what

follows, we shall see the concepts and algorithms that enable database systems to solve

the problems with file-processing systems. In most of this book, we use a bank enterprise

as a running example of a typical data-processing application found in a corporation.

1.5 Characteristics of Database

The database approach has some very characteristic features which are discussed in detail

below:

 6

1.5.1 Concurrent Use

A database system allows several users to access the database concurrently. Answering

different questions from different users with the same (base) data is a central aspect of an

information system. Such concurrent use of data increases the economy of a system.

An example for concurrent use is the travel database of a bigger travel agency. The

employees of different branches can access the database concurrently and book journeys

for their clients. Each travel agent sees on his interface if there are still seats available for

a specific journey or if it is already fully booked.

1.5.2 Structured and Described Data

A fundamental feature of the database approach is that the database systems does not

only contain the data but also the complete definition and description of these data. These

descriptions are basically details about the extent, the structure, the type and the format of

all data and, additionally, the relationship between the data. This kind of stored data is

called metadata ("data about data").

1.5.3 Separation of Data and Applications

As described in the feature structured data the structure of a database is described through

metadata which is also stored in the database. An application software does not need any

knowledge about the physical data storage like encoding, format, storage place, etc. It

only communicates with the management system f a database (DBMS) via a standardised

interface with the help of a standardised language like SQL. The access to the data and

the metadata is entirely done by the DBMS. In this way all the applications can be totally

seperated from the data. Therefore database internal reorganisations or improvement of

efficiency do not have any influence on the application software.

1.5.4 Data Integrity

Data integrity is a byword for the quality and the reliability of the data of a database

system. In a broader sense data integrity includes also the protection of the database from

unauthorised access (confidentiality) and unauthorised changes. Data reflect facts of the

real world. database.

1.5.5 Transactions

A transaction is a bundle of actions which are done within a database to bring it from one

 7

consistent state to a new consistent state. In between the data are inevitable inconsistent.

A transaction is atomic what means that it cannot be divided up any further. Within a

transaction all or none of the actions need to be carried out. Doing only a part of the

actions would lead to an inconsistent database state. One example of a transaction is the

transfer of an amount of money from one bank account to another. The debit of the

money from one account and the credit of it to another account makes together a

consistent transaction. This transaction is also atomic. The debit or credit alone would

both lead to an inconsistent state. After finishing the transaction (debit and credit) the

changes to both accounts become persistent and the one who gave the money has now

less money on his account while the receiver has now a higher balance.

1.5.6 Data Persistence

Data persistence means that in a DBMS all data is maintained as long as it is not deleted

explicitly. The life span of data needs to be determined directly or indirectly be the user

and must not be dependent on system features. Additionally data once stored in a

database must not be lost. Changes of a database which are done by a transaction are

persistent. When a transaction is finished even a system crash cannot put the data in

danger.

1.6 Advantages and Disadvantages of a DBMS

Using a DBMS to manage data has many advantages:

Data independence: Application programs should be as independent as possible from

details of data representation and storage. The DBMS can provide an abstract view of the

data to insulate application code from such details.

Efficient data access: A DBMS utilizes a variety of sophisticated techniques to store and

retrieve data efficiently. This feature is especially important if the data is stored on

external storage devices.

Data integrity and security: If data is always accessed through the DBMS, the DBMS

can enforce integrity constraints on the data. For example, before inserting salary

information for an employee, the DBMS can check that the department budget is not

exceeded. Also, the DBMS can enforce access controls that govern what data is visible to

different classes of users.

 8

Data administration: When several users share the data, centralizing the administration

of data can offer significant improvements. Experienced professionals who understand

the nature of the data being managed, and how different groups of users use it, can be

responsible for organizing the data representation to minimize redundancy and fine-

tuning the storage of the data to make retrieval efficient.

Concurrent access and crash recovery: A DBMS schedules concurrent accesses to the

data in such a manner that users can think of the data as being accessed by only one user

at a time. Further, the DBMS protects users from the effects of system failures.

Reduced application development time: Clearly, the DBMS supports many important

functions that are common to many applications accessing data stored in the DBMS.

This, in conjunction with the high-level interface to the data, facilitates quick

development of applications. Such applications are also likely to be more robust than

applications developed from scratch because many important

tasks are handled by the DBMS instead of being implemented by the application. Given

all these advantages, is there ever a reason not to use a DBMS? A DBMS is a complex

piece of software, optimized for certain kinds of workloads (e.g., answering complex

queries or handling many concurrent requests), and its performance may not be adequate

for certain specialized applications. Examples include applications with tight real-time

constraints or applications with just a few well-designed critical operations for which

efficient custom code must be written. Another reason for not using a DBMS is that an

application may need to manipulate the data in ways not supported by the query

language. In such a situation, the abstract view of the data presented by the DBMS does

not match the application's needs, and actually gets in the way. As an example, relational

databases do not support flexible analysis of text data (although vendors are now

extending their products in this direction). If specialized performance or data

manipulation requirements are central to an application, the application may choose not

to use a DBMS, especially if the added benefits of a DBMS (e.g., flexible querying,

security, concurrent access, and crash recovery) are not required. In most situations

calling for large-scale data management, however, DBMSs have become an

indispensable tool.

 9

Disadvantages of a DBMS

Danger of a Overkill: For small and simple applications for single users a database

system is often not advisable.

Complexity: A database system creates additional complexity and requirements. The

supply and operation of a database management system with several users and databases

is quite costly and demanding.

Qualified Personnel: The professional operation of a database system requires

appropriately trained staff. Without a qualified database administrator nothing will work

for long.

Costs: Through the use of a database system new costs are generated for the system

itselfs but also for additional hardware and the more complex handling of the system.

Lower Efficiency: A database system is a multi-use software which is often less efficient

than specialised software which is produced and optimised exactly for one problem.

1.7 Instances and Schemas

Databases change over time as information is inserted and deleted. The collection of

information stored in the database at a particular moment is called an instance of the

database. The overall design of the database is called the database schema. Schemas are

changed infrequently, if at all.

The concept of database schemas and instances can be understood by analogy to a

program written in a programming language. A database schema corresponds to the

variable declarations (along with associated type definitions) in a program. Each variable

has a particular value at a given instant. The values of the variables in a program at a

point in time correspond to an instance of a database schema.

Database systems have several schemas, partitioned according to the levels of

abstraction.

The physical schema describes the database design at the physical level, while the

logical schema describes the database design at the logical level.Adatabase may also

have several schemas at the view level, sometimes called subschemas, that describe

different views of the database.

 10

Of these, the logical schema is by far the most important, in terms of its effect on

application programs, since programmers construct applications by using the logical

schema. The physical schema is hidden beneath the logical schema, and can usually be

changed easily without affecting application programs. Application programs are said to

exhibit physical data independence if they do not depend on the physical schema, and

thus need not be rewritten if the physical schema changes.

We study languages for describing schemas, after introducing the notion of data models

in the next section.

1.8 Data Models

Underlying the structure of a database is the data model: a collection of conceptual tools

for describing data, data relationships, data semantics, and consistency constraints.

To illustrate the concept of a data model, we outline two data models in this section: the

entity-relationship model and the relational model. Both provide a way to describe the

design of a database at the logical level.

1.8.1 The Entity-Relationship Model

The entity-relationship (E-R) data model is based on a perception of a real world that

consists of a collection of basic objects, called entities, and of relationships among these

objects. An entity is a “thing” or “object” in the real world that is distinguishable from

other objects. For example, each person is an entity, and bank accounts can be considered

as entities.

Entities are described in a database by a set of attributes. For example, the attributes

account-number and balance may describe one particular account in a bank, and they

form attributes of the account entity set. Similarly, attributes customer-name, customer-

street address and customer-city may describe a customer entity.

An extra attribute customer-id is used to uniquely identify customers (since it may be

possible to have two customers with the same name, street address, and city).

A unique customer identifier must be assigned to each customer. In the United States,

many enterprises use the social-security number of a person (a unique number the U.S.

government assigns to every person in the United States) as a customer identifier.

A relationship is an association among several entities. For example, a depositor

relationship associates a customer with each account that she has. The set of all entities of

 11

the same type and the set of all relationships of the same type are termed an entity set

and relationship set, respectively.

The overall logical structure (schema) of a database can be expressed graphically by an

E-R diagram.

1.8.2 Relational Model

The relational model uses a collection of tables to represent both data and the

relationships among those data. Each table has multiple columns, and each column has a

unique name.

The data is arranged in a relation which is visually represented in a two dimensional

table. The data is inserted into the table in the form of tuples (which are nothing but

rows). A tuple is formed by one or more than one attributes, which are used as basic

building blocks in the formation of various expressions that are used to derive a

meaningful information. There can be any number of tuples in the table, but all the tuple

contain fixed and same attributes with varying values. The relational model is

implemented in database where a relation is represented by a table, a tuple is represented

by a row, an attribute is represented by a column of the table, attribute name is the name

of the column such as ‘identifier’, ‘name’, ‘city’ etc., attribute value contains the value

for column in the row. Constraints are applied to the table and form the logical schema.

In order to facilitate the selection of a particular row/tuple from the table, the attributes

i.e. column names are used, and to expedite the selection of the rows some fields are

defined uniquely to use them as indexes, this helps in searching the required data as fast

as possible. All the relational algebra operations, such as Select, Intersection, Product,

Union, Difference, Project, Join, Division, Merge etc. can also be performed on the

Relational Database Model. Operations on the Relational Database Model are facilitated

with the help of different conditional expressions, various key attributes, pre-defined

constraints etc.

1.8.3 Other Data Models

The object-oriented data model is another data model that has seen increasing attention.

The object-oriented model can be seen as extending the E-R model with notions object-

oriented data model.

The object-relational data model combines features of the object-oriented data

 12

model and relational data model. Semistructured data models permit the specification of

data where individual data items of the same type may have different sets of attributes.

This is in contrast with the data models mentioned earlier, where every data item of a

particular type must have the same set of attributes. The extensible markup language

(XML) is widely used to represent semistructured data.

Historically, two other data models, the network data model and the hierarchical data

model, preceded the relational data model. These models were tied closely to the

underlying implementation, and complicated the task of modeling data. As a result they

are little used now, except in old database code that is still in service in some places.

They are outlined in Appendices A and B, for interested readers.

1.9 Database Languages

A database system provides a data definition language to specify the database schema

and a data manipulation language to express database queries and updates. In practice,

the data definition and data manipulation languages are not two separate languages;

instead they simply form parts of a single database language, such as the widely used

SQL language.

1.9.1 Data-Definition Language

We specify a database schema by a set of definitions expressed by a special language

called a data-definition language (DDL).

For instance, the following statement in the SQL language defines the account table:

create table account (account-number char(10), balance integer)

Execution of the above DDL statement creates the account table. In addition, it updates a

special set of tables called the data dictionary or data directory.

A data dictionary contains metadata—that is, data about data. The schema of a table is

an example of metadata. A database system consults the data dictionary before reading or

modifying actual data.

We specify the storage structure and access methods used by the database system by a set

of statements in a special type of DDL called a data storage and definition language.

These statements define the implementation details of the database schemas, which are

usually hidden from the users.

 13

The data values stored in the database must satisfy certain consistency constraints. For

example, suppose the balance on an account should not fall below $100. The DDL

provides facilities to specify such constraints. The database systems check these

constraints every time the database is updated.

1.9.2 Data-Manipulation Language

Data manipulation is

 The retrieval of information stored in the database

 The insertion of new information into the database

 The deletion of information from the database

 The modification of information stored in the database

A data-manipulation language (DML) is a language that enables users to access or

manipulate data as organized by the appropriate data model. There are basically two

types:

 Procedural DMLs require a user to specify what data are needed and how to get those

data.

 Declarative DMLs (also referred to as nonprocedural DMLs) require a user to

specify what data are needed without specifying how to get those data.

Declarative DMLs are usually easier to learn and use than are procedural DMLs.

However, since a user does not have to specify how to get the data, the database system

has to figure out an efficient means of accessing data. The DML component of the SQL

language is nonprocedural.

A query is a statement requesting the retrieval of information. The portion of a DML that

involves information retrieval is called a query language. Although technically incorrect,

it is common practice to use the terms query language and data manipulation language

synonymously.

This query in the SQL language finds the name of the customer whose customer-id

is 192-83-7465:

select customer.customer-name

from customer

where customer.customer-id = 192-83-7465

 14

The query specifies that those rows from the table customer where the customer-id is

192-83-7465 must be retrieved, and the customer-name attribute of these rows must be

displayed.

Queries may involve information from more than one table. For instance, the following

query finds the balance of all accounts owned by the customer with customerid 192-83-

7465.

select account.balance

from depositor, account

where depositor.customer-id = 192-83-7465 and

depositor.account-number = account.account-number

There are a number of database query languages in use, either commercially or

experimentally.

The levels of abstraction apply not only to defining or structuring data, but also to

manipulating data. At the physical level, we must define algorithms that allow efficient

access to data. At higher levels of abstraction, we emphasize ease of use. The goal is to

allow humans to interact efficiently with the system. The query processor component of

the database system translates DML queries into sequences of actions at the physical

level of the database system.

1.10 Data Dictionary

 We can define a data dictionary as a DBMS component that stores the definition of data

characteristics and relationships. You may recall that such “data about data” were labeled

metadata. The DBMS data dictionary provides the DBMS with its self describing

characteristic. In effect, the data dictionary resembles and X-ray of the company’s entire

data set, and is a crucial element in the data administration function.

The two main types of data dictionary exist, integrated and stand alone. An integrated

data dictionary is included with the DBMS. For example, all relational DBMSs include a

built in data dictionary or system catalog that is frequently accessed and updated by the

RDBMS. Other DBMSs especially older types, do not have a built in data dictionary

instead the DBA may use third party stand alone data dictionary systems.

Data dictionaries can also be classified as active or passive. An active data dictionary is

automatically updated by the DBMS with every database access, thereby keeping its

 15

access information up-to-date. A passive data dictionary is not updated automatically and

usually requires a batch process to be run. Data dictionary access information is normally

used by the DBMS for query optimization purpose.

The data dictionary’s main function is to store the description of all objects that interact

with the database. Integrated data dictionaries tend to limit their metadata to the data

managed by the DBMS. Stand alone data dictionary systems are more usually more

flexible and allow the DBA to describe and manage all the organization’s data, whether

or not they are computerized. Whatever the data dictionary’s format, its existence

provides database designers and end users with a much improved ability to communicate.

In addition, the data dictionary is the tool that helps the DBA to resolve data conflicts.

Although, there is no standard format for the information stored in the data dictionary

several features are common. For example, the data dictionary typically stores

descriptions of all:

• Data elements that are define in all tables of all databases. Specifically the data

dictionary stores the name, datatypes, display formats, internal storage formats,

and validation rules. The data dictionary tells where an element is used, by whom

it is used and so on.

• Tables define in all databases. For example, the data dictionary is likely to store

the name of the table creator, the date of creation access authorizations, the

number of columns, and so on.

• Indexes define for each database tables. For each index the DBMS stores at least

the index name the attributes used, the location, specific index characteristics and

the creation date.

• Define databases: who created each database, the date of creation where the

database is located, who the DBA is and so on.

• End users and The Administrators of the data base

• Programs that access the database including screen formats, report formats

application formats, SQL queries and so on.

• Access authorization for all users of all databases.

• Relationships among data elements which elements are involved: whether the

relationship are mandatory or optional, the connectivity and cardinality and so on.

 16

If the data dictionary can be organized to include data external to the DBMS itself, it

becomes an especially flexible to for more general corporate resource management. The

management of such an extensive data dictionary, thus, makes it possible to manage the

use and allocation of all of the organization information regardless whether it has its roots

in the database data. This is why some managers consider the data dictionary to be the

key element of the information resource management function. And this is also why the

data dictionary might be described as the information resource dictionary.

The metadata stored in the data dictionary is often the bases for monitoring the database

use and assignment of access rights to the database users. The information stored in the

database is usually based on the relational table format, thus , enabling the DBA to query

the database with SQL command. For example, SQL command can be used to extract

information about the users of the specific table or about the access rights of a particular

users.

1.11 Database Administrators and Database Users

A primary goal of a database system is to retrieve information from and store new

information in the database. People who work with a database can be categorized as

database users or database administrators.

1.11.1 Database Users and User Interfaces

There are four different types of database-system users, differentiated by the way they

expect to interact with the system. Different types of user interfaces have been designed

for the different types of users.

 Naive users are unsophisticated users who interact with the system by invoking one of

the application programs that have been written previously. For example, a bank teller

who needs to transfer $50 from account A to account B invokes a program called transfer.

This program asks the teller for the amount of money to be transferred, the account from

which the money is to be transferred, and the account to which the money is to be

transferred.

As another example, consider a user who wishes to find her account balance over the

World Wide Web. Such a user may access a form, where she enters her account number.

An application program at the Web server then retrieves the account balance, using the

given account number, and passes this information back to the user. The typical user

 17

interface for naive users is a forms interface, where the user can fill in appropriate fields

of the form. Naive users may also simply read reports generated from the database.

 Application programmers are computer professionals who write application programs.

Application programmers can choose from many tools to develop user interfaces. Rapid

application development (RAD) tools are tools that enable an application programmer

to construct forms and reports without writing a program. There are also special types of

programming languages that combine imperative control structures (for example, for

loops, while loops and if-then-else statements) with statements of the data manipulation

language. These languages, sometimes called fourth-generation languages, often

include special features to facilitate the generation of forms and the display of data on the

screen. Most major commercial database systems include a fourth generation language.

 Sophisticated users interact with the system without writing programs. Instead, they

form their requests in a database query language. They submit each such query to a

query processor, whose function is to break down DML statements into instructions that

the storage manager understands. Analysts who submit queries to explore data in the

database fall in this category.

Online analytical processing (OLAP) tools simplify analysts’ tasks by letting them

view summaries of data in different ways. For instance, an analyst can see total sales by

region (for example, North, South, East, and West), or by product, or by a combination of

region and product (that is, total sales of each product in each region). The tools also

permit the analyst to select specific regions, look at data in more detail (for example,

sales by city within a region) or look at the data in less detail (for example, aggregate

products together by category).

Another class of tools for analysts is data mining tools, which help them find certain

kinds of patterns in data.

Specialized users are sophisticated users who write specialized database applications that

do not fit into the traditional data-processing framework.

Among these applications are computer-aided design systems, knowledge base and

expert systems, systems that store data with complex data types (for example, graphics

data and audio data), and environment-modeling systems.

 18

1.11.2 Database Administrator

One of the main reasons for using DBMSs is to have central control of both the data and

the programs that access those data. A person who has such central control over the

system is called a database administrator (DBA). The functions of a DBA include:

 Schema definition. The DBA creates the original database schema by executing a set of

data definition statements in the DDL.

 Storage structure and access-method definition.

 Schema and physical-organization modification. The DBA carries out changes to the

schema and physical organization to reflect the changing needs of the organization, or to

alter the physical organization to improve performance.

 Granting of authorization for data access. By granting different types of authorization,

the database administrator can regulate which parts of the database various users can

access. The authorization information is kept in a special system structure that the

database system consults whenever someone attempts to access the data in the system.

 Routine maintenance. Examples of the database administrator’s routine maintenance

activities are:

Periodically backing up the database, either onto tapes or onto remote servers, to prevent

loss of data in case of disasters such as flooding.

Ensuring that enough free disk space is available for normal operations, and upgrading

disk space as required.

Monitoring jobs running on the database and ensuring that performance is not degraded

by very expensive tasks submitted by some users.

1.12 DBMS Architecture and Data Independence

Three important characteristics of the database approach are (1) insulation of programs

and data (program-data and program-operation independence); (2) support of multiple

user views; and (3) use of a catalog to store the database description (schema). In this

section we specify an architecture for database systems, called the three-schema

architecture, which was proposed to help achieve and visualize these characteristics. We

then discuss the concept of data independence.

 19

1.12.1 The Three-Schema Architecture

The goal of the three-schema architecture, illustrated in Figure 1.1, is to separate the user

applications and the physical database. In this architecture, schemas can be defined at the

following three levels:

1. The internal level has an internal schema, which describes the physical storage

structure of the database. The internal schema uses a physical data model and

describes the complete details of data storage and access paths for the database.

2. The conceptual level has a conceptual schema, which describes the structure of

the whole database for a community of users. The conceptual schema hides the

details of physical storage structures and concentrates on describing entities, data

types, relationships, user operations, and constraints. A high-level data model or

an implementation data model can be used at this level.

3. The external or view level includes a number of external schemas or user views.

Each external schema describes the part of the database that a particular user

group is interested in and hides the rest of the database from that user group. A

high-level data model or an implementation data model can be used at this level.

Figure 1.1 The Three Schema Architecture

The three-schema architecture is a convenient tool for the user to visualize the schema

levels in a database system. Most DBMSs do not separate the three levels completely, but

support the three-schema architecture to some extent. Some DBMSs may include

physical-level details in the conceptual schema. In most DBMSs that support user views,

 20

external schemas are specified in the same data model that describes the conceptual-level

information. Some DBMSs allow different data models to be used at the conceptual and

external levels.

Notice that the three schemas are only descriptions of data; the only data that actually

exists is at the physical level. In a DBMS based on the three-schema architecture, each

user group refers only to its own external schema. Hence, the DBMS must transform a

request specified on an external schema into a request against the conceptual schema, and

then into a request on the internal schema for processing over the stored database. If the

request is a database retrieval, the data extracted from the stored database must be

reformatted to match the user’s external view. The processes of transforming requests

and results between levels are called mappings. These mappings may be time-

consuming, so some DBMSs—especially those that are meant to support small

databases—do not support external views. Even in such systems, however, a certain

amount of mapping is necessary to transform requests between the conceptual and

internal levels.

1.12.2 Data Independence

The three-schema architecture can be used to explain the concept of data independence,

which can be defined as the capacity to change the schema at one level of a database

system without having to change the schema at the next higher level. We can define two

types of data independence:

1. Logical data independence is the capacity to change the conceptual schema

without having to change external schemas or application programs. We may

change the conceptual schema to expand the database (by adding a record type or

data item), or to reduce the database (by removing a record type or data item). In

the latter case, external schemas that refer only to the remaining data should not

be affected. Only the view definition and the mappings need be changed in a

DBMS that supports logical data independence. Application programs that

reference the external schema constructs must work as before, after the conceptual

schema undergoes a logical reorganization. Changes to constraints can be applied

also to the conceptual schema without affecting the external schemas or

application programs.

 21

2. Physical data independence is the capacity to change the internal schema

without having to change the conceptual (or external) schemas. Changes to the

internal schema may be needed because some physical files had to be

reorganized—for example, by creating additional access structures—to improve

the performance of retrieval or update. If the same data as before remains in the

database, we should not have to change the conceptual schema.

Whenever we have a multiple-level DBMS, its catalog must be expanded to include

information on how to map requests and data among the various levels. The DBMS uses

additional software to accomplish these mappings by referring to the mapping

information in the catalog. Data independence is accomplished because, when the schema

is changed at some level, the schema at the next higher level remains unchanged; only the

mapping between the two levels is changed. Hence, application programs referring to the

higher-level schema need not be changed.

The three-schema architecture can make it easier to achieve true data independence, both

physical and logical. However, the two levels of mappings create an overhead during

compilation or execution of a query or program, leading to inefficiencies in the DBMS.

Because of this, few DBMSs have implemented the full three-schema architecture.

1.13 Types of Database System

Several criteria are normally used to classify DBMSs. The first is the data model on

which the DBMS is based. The main data model used in many current commercial

DBMSs is the relational data model. The object data model was implemented in some

commercial systems but has not had widespread use. Many legacy (older) applications

still run on database systems based on the hierarchical and network data models. The

relational DBMSs are evolving continuously, and, in particular, have been incorporating

many of the concepts that were developed in object databases. This has led to a new class

of DBMSs called object-relational DBMSs. We can hence categorize DBMSs based on

the data model: relational, object, object-relational, hierarchical, network, and other.

The second criterion used to classify DBMSs is the number of users supported by the

system. Single-user systems support only one user at a time and are mostly used with

personal computers. Multiuser systems, which include the majority of DBMSs, support

multiple users concurrently. A third criterion is the number of sites over which the

 22

database is distributed. A DBMS is centralized if the data is stored at a single computer

site. A centralized DBMS can support multiple users, but the DBMS and the database

themselves reside totally at a single computer site. A distributed DBMS (DDBMS) can

have the actual database and DBMS software distributed over many sites, connected by a

computer network. Homogeneous DDBMSs use the same DBMS software at multiple

sites. A recent trend is to develop software to access several autonomous preexisting

databases stored under heterogeneous llBMSs. This leads to a federated DBMS (or

multidatabase system), in which the participating DBMSs are loosely coupled and have a

degree of local autonomy. Many DBMSs use a client-server architecture.

1.14 Summary

In this chapter we have discussed in a relatively informal manner the major components

of a database system. We summarise the discussion below:

A database-management system (DBMS) is a collection of interrelated data and a set of

programs to access those data. This is a collection of related data with an implicit

meaning and hence is a database.

A datum – a unit of data – is a symbol or a set of symbols which is used to represent

something. This relationship between symbols and what they represent is the essence of

what we mean by information.

Knowledge refers to the practical use of information.

The collection of information stored in the database at a particular moment is called an

instance of the database. The overall design of the database is called the database

schema.

The physical schema describes the database design at the physical level, while the

logical schema describes the database design at the logical level.Adatabase may also

have several schemas at the view level, sometimes called subschemas, that describe

different views of the database.

Application programs are said to exhibit physical data independence if they do not

depend on the physical schema, and thus need not be rewritten if the physical schema

changes.

Underlying the structure of a database is the data model: a collection of conceptual tools

for describing data, data relationships, data semantics, and consistency constraints.

 23

A database system provides a data definition language to specify the database schema

and a data manipulation language to express database queries and updates.

One of the main reasons for using DBMSs is to have central control of both the data and

the programs that access those data. A person who has such central control over the

system is called a database administrator (DBA).

1.15 Key Words

DBMS, Data Integrity, Data Persistence, Instances, Schemas, Physical Schema, Logical

Schema, Data Model, DDL, DML, Data Dictionary

1.16 Self Assessment Questions

1. Why would you choose a database system instead of simply storing data in

operating system files? When would it make sense not to use a database system?

2. What is logical data independence and why is it important?

3. Explain the difference between logical and physical data independence.

4. Explain the difference between external, internal, and conceptual schemas. How

are these different schema layers related to the concepts of logical and physical

data independence?

5. What are the responsibilities of a DBA?

6. Distinguish between logical and physical database design.

7. Describe and define the key properties of a database system. Give an

organizational example of the benefits of each property.

1.17 References/Suggested Readings

1 http://www.microsoft-accesssolutions.co.uk

2 Date, C, J, Introduction to Database Systems, 7
th

edition

3 Leon, Alexis and Leon, Mathews, Database Management Systems,

LeonTECHWorld.

 24

MCA 202/MS 11

Author: Abhishek Taneja Vetter: Sh. Dharminder Kumar
Lesson No. : 02 Lesson: Data Modeling Using Entity-Relationship Approach

Structure
2.0 Objectives
2.1 Introduction
2.2 Data Modeling In the Context of Database Design
2.3 The Entity-Relationship Model
2.4 Data Modeling As Part of Database Design
2.5 Steps In Building the Data Model
2.6 Developing the Basic Schema
2.7 Summary
2.8 Key Words
2.9 Self Assessment Questions
2.10 References/Suggested Readings

2.0 Objectives
At the end of this chapter the reader will be able to:

• Describe basic concepts of ER Model
• Describe components of a data model
• Describe basic constructs of E-R Modeling
• Describe data modeling as a part of database design process
• Describe steps in building the data model
• Describe developing the basic schema

 1

2.1 Introduction

A data model is a conceptual representation of the data structures that are required by a

database. The data structures include the data objects, the associations between data

objects, and the rules which govern operations on the objects. As the name implies, the

data model focuses on what data is required and how it should be organized rather than

what operations will be performed on the data. To use a common analogy, the data model

is equivalent to an architect's building plans.

A data model is independent of hardware or software constraints. Rather than try to

represent the data as a database would see it, the data model focuses on representing the

data as the user sees it in the "real world". It serves as a bridge between the concepts that

make up real-world events and processes and the physical representation of those

concepts in a database.

Methodology

There are two major methodologies used to create a data model: the Entity-Relationship

(ER) approach and the Object Model. This document uses the Entity-Relationship

approach.

2.2 Data Modeling In the Context of Database Design

Database design is defined as: "design the logical and physical structure of one or more

databases to accommodate the information needs of the users in an organization for a

defined set of applications". The design process roughly follows five steps:

1. Planning and analysis

2. Conceptual design

3. Logical design

4. Physical design

5. Implementation

The data model is one part of the conceptual design process. The other, typically is the

functional model. The data model focuses on what data should be stored in the database

while the functional model deals with how the data is processed. To put this in the

context of the relational database, the data model is used to design the relational tables.

The functional model is used to design the queries which will access and perform

operations on those tables.

 2

Components of a Data Model

The data model gets its inputs from the planning and analysis stage. Here the modeler,

along with analysts, collects information about the requirements of the database by

reviewing existing documentation and interviewing end-users.

The data model has two outputs. The first is an entity-relationship diagram which

represents the data structures in a pictorial form. Because the diagram is easily learned, it

is valuable tool to communicate the model to the end-user. The second component is a

data document. This a document that describes in detail the data objects, relationships,

and rules required by the database. The dictionary provides the detail required by the

database developer to construct the physical database.

Why is Data Modeling Important?

Data modeling is probably the most labor intensive and time consuming part of the

development process. Why bother especially if you are pressed for time? A common

response by practitioners who write on the subject is that you should no more build a

database without a model than you should build a house without blueprints.

The goal of the data model is to make sure that the all data objects required by the

database are completely and accurately represented. Because the data model uses easily

understood notations and natural language , it can be reviewed and verified as correct by

the end-users.

The data model is also detailed enough to be used by the database developers to use as a

"blueprint" for building the physical database. The information contained in the data

model will be used to define the relational tables, primary and foreign keys, stored

procedures, and triggers. A poorly designed database will require more time in the long-

term. Without careful planning you may create a database that omits data required to

create critical reports, produces results that are incorrect or inconsistent, and is unable to

accommodate changes in the user's requirements.

2.3 The Entity-Relationship Model

The Entity-Relationship (ER) model was originally proposed by Peter in 1976 as a way to

unify the network and relational database views. Simply stated the ER model is a

conceptual data model that views the real world as entities and relationships. A basic

component of the model is the Entity-Relationship diagram which is used to visually

 3

represents data objects. Since Chen wrote his paper the model has been extended and

today it is commonly used for database design For the database designer, the utility of the

ER model is:

It maps well to the relational model. The constructs used in the ER model can easily be

transformed into relational tables.

It is simple and easy to understand with a minimum of training. Therefore, the model can

be used by the database designer to communicate the design to the end user.

In addition, the model can be used as a design plan by the database developer to

implement a data model in a specific database management software.

Basic Constructs of E-R Modeling

The ER model views the real world as a construct of entities and association between

entities.

Entities

Entities are the principal data object about which information is to be collected. Entities

are usually recognizable concepts, either concrete or abstract, such as person, places,

things, or events which have relevance to the database. Some specific examples of

entities are EMPLOYEES, PROJECTS, INVOICES. An entity is analogous to a table in

the relational model.

Entities are classified as independent or dependent (in some methodologies, the terms

used are strong and weak, respectively). An independent entity is one that does not rely

on another for identification. A dependent entity is one that relies on another for

identification.

An entity occurrence (also called an instance) is an individual occurrence of an entity. An

occurrence is analogous to a row in the relational table.

Special Entity Types

Associative entities (also known as intersection entities) are entities used to associate two

or more entities in order to reconcile a many-to-many relationship.

Subtypes entities are used in generalization hierarchies to represent a subset of instances

of their parent entity, called the supertype, but which have attributes or relationships that

apply only to the subset.

Associative entities and generalization hierarchies are discussed in more detail below.

 4

Relationships

A Relationship represents an association between two or more entities. An example of a

relationship would be:

Employees are assigned to projects

Projects have subtasks

Departments manage one or more projects

Relationships are classified in terms of degree, connectivity, cardinality, and existence.

These concepts will be discussed below.

Attributes

Attributes describe the entity of which they are associated. A particular instance of an

attribute is a value. For example, "Jane R. Hathaway" is one value of the attribute Name.

The domain of an attribute is the collection of all possible values an attribute can have.

The domain of Name is a character string.

Attributes can be classified as identifiers or descriptors. Identifiers, more commonly

called keys, uniquely identify an instance of an entity. A descriptor describes a non-

unique characteristic of an entity instance.

Classifying Relationships

Relationships are classified by their degree, connectivity, cardinality, direction, type, and

existence. Not all modeling methodologies use all these classifications.

Degree of a Relationship

The degree of a relationship is the number of entities associated with the relationship.

The n-ary relationship is the general form for degree n. Special cases are the binary, and

ternary ,where the degree is 2, and 3, respectively.

Binary relationships, the association between two entities is the most common type in the

real world. A recursive binary relationship occurs when an entity is related to itself. An

example might be "some employees are married to other employees".

A ternary relationship involves three entities and is used when a binary relationship is

inadequate. Many modeling approaches recognize only binary relationships. Ternary or

n-ary relationships are decomposed into two or more binary relationships.

Connectivity and Cardinality The connectivity of a relationship describes the mapping

of associated entity instances in the relationship. The values of connectivity are "one" or

 5

"many". The cardinality of a relationship is the actual number of related occurences for

each of the two entities. The basic types of connectivity for relations are: one-to-one, one-

to-many, and many-to-many.

A one-to-one (1:1) relationship is when at most one instance of a entity A is associated

with one instance of entity B. For example, "employees in the company are each assigned

their own office. For each employee there exists a unique office and for each office there

exists a unique employee.

A one-to-many (1:N) relationships is when for one instance of entity A, there are zero,

one, or many instances of entity B, but for one instance of entity B, there is only one

instance of entity A. An example of a 1:N relationships is

A department has many employees

Each employee is assigned to one department

A many-to-many (M:N) relationship, sometimes called non-specific, is when for one

instance of entity A, there are zero, one, or many instances of entity B and for one

instance of entity B there are zero, one, or many instances of entity A. An example is:

employees can be assigned to no more than two projects at the same time;

projects must have assigned at least three employees

A single employee can be assigned to many projects; conversely, a single project can

have assigned to it many employee. Here the cardinality for the relationship between

employees and projects is two and the cardinality between project and employee is three.

Many-to-many relationships cannot be directly translated to relational tables but instead

must be transformed into two or more one-to-many relationships using associative

entities.

Direction

The direction of a relationship indicates the originating entity of a binary relationship.

The entity from which a relationship originates is the parent entity; the entity where the

relationship terminates is the child entity.

The direction of a relationship is determined by its connectivity. In a one-to-one

relationship the direction is from the independent entity to a dependent entity. If both

entities are independent, the direction is arbitrary. With one-to-many relationships, the

 6

entity occurring once is the parent. The direction of many-to-many relationships is

arbitrary.

Type

An identifying relationship is one in which one of the child entities is also a dependent

entity. A non-identifying relationship is one in which both entities are independent.

Existence

Existence denotes whether the existence of an entity instance is dependent upon the

existence of another, related, entity instance. The existence of an entity in a relationship

is defined as either mandatory or optional. If an instance of an entity must always occur

for an entity to be included in a relationship, then it is mandatory. An example of

mandatory existence is the statement "every project must be managed by a single

department". If the instance of the entity is not required, it is optional. An example of

optional existence is the statement, "employees may be assigned to work on projects".

Generalization Hierarchies

A generalization hierarchy is a form of abstraction that specifies that two or more entities

that share common attributes can be generalized into a higher level entity type called a

supertype or generic entity. The lower-level of entities become the subtype, or categories,

to the supertype. Subtypes are dependent entities.

Generalization occurs when two or more entities represent categories of the same real-

world object. For example, Wages_Employees and Classified_Employees represent

categories of the same entity, Employees. In this example, Employees would be the

supertype; Wages_Employees and Classified_Employees would be the subtypes.

Subtypes can be either mutually exclusive (disjoint) or overlapping (inclusive). A

mutually exclusive category is when an entity instance can be in only one category. The

above example is a mutually exclusive category. An employee can either be wages or

classified but not both. An overlapping category is when an entity instance may be in two

or more subtypes. An example would be a person who works for a university could also

be a student at that same university. The completeness constraint requires that all

instances of the subtype be represented in the supertype. Generalization hierarchies can

be nested. That is, a subtype of one hierarchy can be a supertype of another. The level of

 7

nesting is limited only by the constraint of simplicity. Subtype entities may be the parent

entity in a relationship but not the child.

ER Notation

There is no standard for representing data objects in ER diagrams. Each modeling

methodology uses its own notation. All notational styles represent entities as rectangular

boxes and relationships as lines connecting boxes. Each style uses a special set of

symbols to represent the cardinality of a connection. The notation used in this document

is from Martin. The symbols used for the basic ER constructs are:

• Entities are represented by labeled rectangles. The label is the name of the entity.

Entity names should be singular nouns.

• Relationships are represented by a solid line connecting two entities. The name of

the relationship is written above the line. Relationship names should be verbs.

• Attributes, when included, are listed inside the entity rectangle. Attributes which

are identifiers are underlined. Attribute names should be singular nouns.

• Cardinality of many is represented by a line ending in a crow's foot. If the crow's

foot is omitted, the cardinality is one.

• Existence is represented by placing a circle or a perpendicular bar on the line.

Mandatory existence is shown by the bar (looks like a 1) next to the entity for an

instance is required. Optional existence is shown by placing a circle next to the

entity that is optional.

Examples of these symbols are shown in Figure 2.1 below:

Figure 2.1 ER Notation

 8

2.4 Data Modeling As Part of Database Design

The data model is one part of the conceptual design process. The other is the function

model. The data model focuses on what data should be stored in the database while the

function model deals with how the data is processed. To put this in the context of the

relational database, the data model is used to design the relational tables. The functional

model is used to design the queries that will access and perform operations on those

tables.

Data modeling is preceeded by planning and analysis. The effort devoted to this stage is

proportional to the scope of the database. The planning and analysis of a database

intended to serve the needs of an enterprise will require more effort than one intended to

serve a small workgroup.

The information needed to build a data model is gathered during the requirments analysis.

Although not formally considered part of the data modeling stage by some

methodologies, in reality the requirements analysis and the ER diagramming part of the

data model are done at the same time.

Requirements Analysis

The goals of the requirements analysis are:

• To determine the data requirements of the database in terms of primitive objects

• To classify and describe the information about these objects

• To identify and classify the relationships among the objects

• To determine the types of transactions that will be executed on the database and

the interactions between the data and the transactions

• To identify rules governing the integrity of the data

The modeler, or modelers, works with the end users of an organization to determine the

data requirements of the database. Information needed for the requirements analysis can

be gathered in several ways:

Review of existing documents - such documents include existing forms and reports,

written guidelines, job descriptions, personal narratives, and memoranda. Paper

documentation is a good way to become familiar with the organization or activity you

need to model.

 9

Interviews with end users - these can be a combination of individual or group meetings.

Try to keep group sessions to under five or six people. If possible, try to have everyone

with the same function in one meeting. Use a blackboard, flip charts, or overhead

transparencies to record information gathered from the interviews.

Review of existing automated systems - if the organization already has an automated

system, review the system design specifications and documentation

The requirements analysis is usually done at the same time as the data modeling. As

information is collected, data objects are identified and classified as either entities,

attributes, or relationship; assigned names; and, defined using terms familiar to the end-

users. The objects are then modeled and analysed using an ER diagram. The diagram can

be reviewed by the modeler and the end-users to determine its completeness and

accuracy. If the model is not correct, it is modified, which sometimes requires additional

information to be collected. The review and edit cycle continues until the model is

certified as correct.

Three points to keep in mind during the requirements analysis are:

1. Talk to the end users about their data in "real-world" terms. Users do not think in

terms of entities, attributes, and relationships but about the actual people, things,

and activities they deal with daily.

2. Take the time to learn the basics about the organization and its activities that you

want to model. Having an understanding about the processes will make it easier to

build the model.

3. End-users typically think about and view data in different ways according to their

function within an organization. Therefore, it is important to interview the largest

number of people that time permits.

2.5 Steps In Building the Data Model

While ER model lists and defines the constructs required to build a data model, there is

no standard process for doing so. Some methodologies, such as IDEFIX, specify a

bottom-up development process were the model is built in stages. Typically, the entities

and relationships are modeled first, followed by key attributes, and then the model is

finished by adding non-key attributes. Other experts argue that in practice, using a phased

 10

approach is impractical because it requires too many meetings with the end-users. The

sequence used for this document are:

1. Identification of data objects and relationships

2. Drafting the initial ER diagram with entities and relationships

3. Refining the ER diagram

4. Add key attributes to the diagram

5. Adding non-key attributes

6. Diagramming Generalization Hierarchies

7. Validating the model through normalization

8. Adding business and integrity rules to the Model

In practice, model building is not a strict linear process. As noted above, the requirements

analysis and the draft of the initial ER diagram often occur simultaneously. Refining and

validating the diagram may uncover problems or missing information which require more

information gathering and analysis

Identifying Data Objects and Relationships

In order to begin constructing the basic model, the modeler must analyze the information

gathered during the requirements analysis for the purpose of:

• Classifying data objects as either entities or attributes

• Identifying and defining relationships between entities

• Naming and defining identified entities, attributes, and relationships

• Documenting this information in the data document

To accomplish these goals the modeler must analyze narratives from users, notes from

meeting, policy and procedure documents, and, if lucky, design documents from the

current information system.

Although it is easy to define the basic constructs of the ER model, it is not an easy task to

distinguish their roles in building the data model. What makes an object an entity or

attribute? For example, given the statement "employees work on projects". Should

employees be classified as an entity or attribute? Very often, the correct answer depends

upon the requirements of the database. In some cases, employee would be an entity, in

some it would be an attribute.

 11

While the definitions of the constructs in the ER Model are simple, the model does not

address the fundamental issue of how to identify them. Some commonly given guidelines

are:

• Entities contain descriptive information

• Attributes either identify or describe entities

• Relationships are associations between entities

These guidelines are discussed in more detail below.

• Entities

• Attributes

o Validating Attributes

o Derived Attributes and Code Values

• Relationships

• Naming Data Objects

• Object Definition

• Recording Information in Design Document

Entities

There are various definitions of an entity:

"Any distinguishable person, place, thing, event, or concept, about which information is

kept"

"A thing which can be distinctly identified"

"Any distinguishable object that is to be represented in a database"

"...anything about which we store information (e.g. supplier, machine tool, employee,

utility pole, airline seat, etc.). For each entity type, certain attributes are stored".

These definitions contain common themes about entities:

o An entity is a "thing", "concept" or, object". However, entities can sometimes

represent the relationships between two or more objects. This type of entity is

known as an associative entity.

o Entities are objects which contain descriptive information. If an data object you

have identified is described by other objects, then it is an entity. If there is no

descriptive information associated with the item, it is not an entity. Whether or

 12

not a data object is an entity may depend upon the organization or activity being

modeled.

o An entity represents many things which share properties. They are not single

things. For example, King Lear and Hamlet are both plays which share common

attributes such as name, author, and cast of characters. The entity describing these

things would be PLAY, with King Lear and Hamlet being instances of the entity.

o Entities which share common properties are candidates for being converted to

generalization hierarchies (See below)

o Entities should not be used to distinguish between time periods. For example, the

entities 1st Quarter Profits, 2nd Quarter Profits, etc. should be collapsed into a

single entity called Profits. An attribute specifying the time period would be used

to categorize by time

o Not every thing the users want to collect information about will be an entity. A

complex concept may require more than one entity to represent it. Others "things"

users think important may not be entities.

Attributes

Attributes are data objects that either identify or describe entities. Attributes that identify

entities are called key attributes. Attributes that describe an entity are called non-key

attributes. Key attributes will be discussed in detail in a latter section.

The process for identifying attributes is similar except now you want to look for and

extract those names that appear to be descriptive noun phrases.

Validating Attributes

Attribute values should be atomic, that is, present a single fact. Having disaggregated

data allows simpler programming, greater reusability of data, and easier implementation

of changes. Normalization also depends upon the "single fact" rule being followed.

Common types of violations include:

o Simple aggregation - a common example is Person Name which concatenates first

name, middle initial, and last name. Another is Address which concatenates, street

address, city, and zip code. When dealing with such attributes, you need to find

out if there are good reasons for decomposing them. For example, do the end-

 13

users want to use the person's first name in a form letter? Do they want to sort by

zip code?

o Complex codes - these are attributes whose values are codes composed of

concatenated pieces of information. An example is the code attached to

automobiles and trucks. The code represents over 10 different pieces of

information about the vehicle. Unless part of an industry standard, these codes

have no meaning to the end user. They are very difficult to process and update.

o Text blocks - these are free-form text fields. While they have a legitimate use, an

over reliance on them may indicate that some data requirements are not met by

the model.

o Mixed domains - this is where a value of an attribute can have different meaning

under different conditions

Derived Attributes and Code Values

Two areas where data modeling experts disagree is whether derived attributes and

attributes whose values are codes should be permitted in the data model.

Derived attributes are those created by a formula or by a summary operation on other

attributes. Arguments against including derived data are based on the premise that

derived data should not be stored in a database and therefore should not be included in

the data model. The arguments in favor are:

o Derived data is often important to both managers and users and therefore should

be included in the data model

o It is just as important, perhaps more so, to document derived attributes just as you

would other attributes

o Including derived attributes in the data model does not imply how they will be

implemented

A coded value uses one or more letters or numbers to represent a fact. For example, the

value Gender might use the letters "M" and "F" as values rather than "Male" and

"Female". Those who are against this practice cite that codes have no intuitive meaning to

the end-users and add complexity to processing data. Those in favor argue that many

organizations have a long history of using coded attributes, that codes save space, and

 14

improve flexibility in that values can be easily added or modified by means of look-up

tables.

Relationships

Relationships are associations between entities. Typically, a relationship is indicated by a

verb connecting two or more entities. For example:

employees are assigned to projects

As relationships are identified they should be classified in terms of cardinality,

optionality, direction, and dependence. As a result of defining the relationships, some

relationships may be dropped and new relationships added. Cardinality quantifies the

relationships between entities by measuring how many instances of one entity are related

to a single instance of another. To determine the cardinality, assume the existence of an

instance of one of the entities. Then determine how many specific instances of the second

entity could be related to the first. Repeat this analysis reversing the entities. For

example:

Employees may be assigned to no more than three projects at a time; every project has at

least two employees assigned to it.

Here the cardinality of the relationship from employees to projects is three; from projects

to employees, the cardinality is two. Therefore, this relationship can be classified as a

many-to-many relationship.

If a relationship can have a cardinality of zero, it is an optional relationship. If it must

have a cardinality of at least one, the relationship is mandatory. Optional relationships are

typically indicated by the conditional tense. For example:

An employee may be assigned to a project

Mandatory relationships, on the other hand, are indicated by words such as must have.

For example:

A student must register for at least three course each semester

In the case of the specific relationship form (1:1 and 1:M), there is always a parent entity

and a child entity. In one-to-many relationships, the parent is always the entity with the

cardinality of one. In one-to-one relationships, the choice of the parent entity must be

made in the context of the business being modeled. If a decision cannot be made, the

choice is arbitrary.

 15

Naming Data Objects

The names should have the following properties:

o Unique

o Have meaning to the end-user

o Contain the minimum number of words needed to uniquely and accurately

describe the object

For entities and attributes, names are singular nouns while relationship names are

typically verbs.

Some authors advise against using abbreviations or acronyms because they might lead to

confusion about what they mean. Other believe using abbreviations or acronyms are

acceptable provided that they are universally used and understood within the

organization.

You should also take care to identify and resolve synonyms for entities and attributes.

This can happen in large projects where different departments use different terms for the

same thing.

Object Definition

Complete and accurate definitions are important to make sure that all parties involved in

the modeling of the data know exactly what concepts the objects are representing.

Definitions should use terms familiar to the user and should precisely explain what the

object represents and the role it plays in the enterprise. Some authors recommend having

the end-users provide the definitions. If acronyms, or terms not universally understood

are used in the definition, then these should be defined .

While defining objects, the modeler should be careful to resolve any instances where a

single entity is actually representing two different concepts (homonyms) or where two

different entities are actually representing the same "thing" (synonyms). This situation

typically arises because individuals or organizations may think about an event or process

in terms of their own function.

An example of a homonym would be a case where the Marketing Department defines the

entity MARKET in terms of geographical regions while the Sales Departments thinks of

this entity in terms of demographics. Unless resolved, the result would be an entity with

two different meanings and properties.

 16

Conversely, an example of a synonym would be the Service Department may have

identified an entity called CUSTOMER while the Help Desk has identified the entity

CONTACT. In reality, they may mean the same thing, a person who contacts or calls the

organization for assistance with a problem. The resolution of synonyms is important in

order to avoid redundancy and to avoid possible consistency or integrity problems.

Recording Information in Design Document

The design document records detailed information about each object used in the model.

As you name, define, and describe objects, this information should be placed in this

document. If you are not using an automated design tool, the document can be done on

paper or with a word processor. There is no standard for the organization of this

document but the document should include information about names, definitions, and, for

attributes, domains.

Two documents used in the IDEF1X method of modeling are useful for keeping track of

objects. These are the ENTITY-ENTITY matrix and the ENTITY-ATTRIBUTE matrix.

The ENTITY-ENTITY matrix is a two-dimensional array for indicating relationships

between entities. The names of all identified entities are listed along both axes. As

relationships are first identified, an "X" is placed in the intersecting points where any of

the two axes meet to indicate a possible relationship between the entities involved. As the

relationship is further classified, the "X" is replaced with the notation indicating

cardinality.

The ENTITY-ATTRIBUTE matrix is used to indicate the assignment of attributes to

entities. It is similar in form to the ENTITY-ENTITY matrix except attribute names are

listed on the rows.

Figure 2.2 shows examples of an ENTITY-ENTITY matrix and an ENTITY-

ATTRIBUTE matrix.

 17

Figure 2.2

2.6 Developing the Basic Schema

Once entities and relationships have been identified and defined, the first draft of the

entity relationship diagram can be created. This section introduces the ER diagram by

demonstrating how to diagram binary relationships. Recursive relationships are also

shown.

Binary Relationships

Figure 2.3 shows examples of how to diagram one-to-one, one-to-many, and many-to-

many relationships.

 18

Figure 2.3 Example of Binary relationships

One-To-One

Figure 1A shows an example of a one-to-one diagram. Reading the diagram from left to

right represents the relationship every employee is assigned a workstation. Because every

employee must have a workstation, the symbol for mandatory existence—in this case the

crossbar—is placed next to the WORKSTATION entity. Reading from right to left, the

diagram shows that not all workstation are assigned to employees. This condition may

reflect that some workstations are kept for spares or for loans. Therefore, we use the

symbol for optional existence, the circle, next to EMPLOYEE. The cardinality and

existence of a relationship must be derived from the "business rules" of the organization.

For example, if all workstations owned by an organization were assigned to employees,

then the circle would be replaced by a crossbar to indicate mandatory existence. One-to-

one relationships are rarely seen in "real-world" data models. Some practioners advise

 19

that most one-to-one relationships should be collapsed into a single entity or converted to

a generalization hierarchy.

One-To-Many

Figure 1B shows an example of a one-to-many relationship between DEPARTMENT and

PROJECT. In this diagram, DEPARTMENT is considered the parent entity while

PROJECT is the child. Reading from left to right, the diagram represents departments

may be responsible for many projects. The optionality of the relationship reflects the

"business rule" that not all departments in the organization will be responsible for

managing projects. Reading from right to left, the diagram tells us that every project must

be the responsibility of exactly one department.

Many-To-Many

Figure 1C shows a many-to-many relationship between EMPLOYEE and PROJECT. An

employee may be assigned to many projects; each project must have many employee

Note that the association between EMPLOYEE and PROJECT is optional because, at a

given time, an employee may not be assigned to a project. However, the relationship

between PROJECT and EMPLOYEE is mandatory because a project must have at least

two employees assigned. Many-To-Many relationships can be used in the initial drafting

of the model but eventually must be transformed into two one-to-many relationships. The

transformation is required because many-to-many relationships cannot be represented by

the relational model. The process for resolving many-to-many relationships is discussed

in the next section.

Recursive relationships

A recursive relationship is an entity is associated with itself. Figure 2.4 shows an example

of the recursive relationship.

 20

An employee may manage many employees and each employee is managed by one

employee.

Figure 2.4 Example of Recursive relationship

2.7 Summary

• A data model is a plan for building a database. To be effective, it must be simple

enough to communicate to the end user the data structure required by the database

yet detailed enough for the database design to use to create the physical structure.

• The Entity-Relation Model (ER) is the most common method used to build data

models for relational databases.

• The Entity-Relationship Model is a conceptual data model that views the real

world as consisting of entities and relationships. The model visually represents

these concepts by the Entity-Relationship diagram.

• The basic constructs of the ER model are entities, relationships, and attributes.

• Data modeling must be preceded by planning and analysis.

• Planning defines the goals of the database, explains why the goals are important,

and sets out the path by which the goals will be reached.

• Analysis involves determining the requirements of the database. This is typically

done by examining existing documentation and interviewing users.

• Data modeling is a bottom up process. A basic model, representing entities and

relationships, is developed first. Then detail is added to the model by including

information about attributes and business rules.

 21

• The first step in creating the data model is to analyze the information gathered

during the requirements analysis with the goal of identifying and classifying data

objects and relationships

• The Entity-Relationship diagram provides a pictorial representation of the major

data objects, the entities, and the relationships between them.

2.8 Key Words

ER Model, Database Design, Data Model, Schema, Entities, Relationship, Attributes,

Cardinality

2.9 Self Assessment Questions

1. A university registrar’s office maintains data about the following entities:

• Courses, including number, title, credits, syllabus, and prerequisites;

• Course offerings, including course number, year, semester, section

number, instructor(s), timings, and classroom;

• Students, including student-id, name, and program;

• Instructors, including identification number, name, department, and title.

Further, the enrollment of students in courses and grades awarded to students in each

course they are enrolled for must be appropriately modeled.Construct a E-R diagram for

registrar’s office. Document all assumptions that you make about the mapping constraints

2. Design an E-R diagram for keeping track of the exploits of your favorite sports team.

You should store the matches played, the scores in each match, the players in each

match, and individual player statistics for each match. Summary statistics should be

modeled as derived attributes.

3. Explain the significance of ER Model for Database design?

4. Enumerate the basic constructs of ER Model

2.10 References/Suggested Readings

1. Date, C.J., Introduction to Database Systems (7
th

Edition) Addison Wesley, 2000
2. Leon, Alexis and Leon, Mathews, Database Management Systems, LeonTECHWorld

3. Elamasri R . and Navathe, S., Fundamentals of Database Systems (3
rd

Edition),
Pearsson Education, 2000.

 22

MCA 202/MS 11

Author: Abhishek Taneja Vetter: Dr.Pradeep Bhatia
Lesson: Relational Model Lesson No. : 03

Structure
3.0 Objectives
3.1 Introduction
3.2 Relational Model Concepts
3.3 Relational Model Constraints
3.4 Relational Languages
3.5 Relational Algebra
3.6 A Relational Database Management Systems-ORACLE
3.7 Summary
3.8 Key Words
3.9 Self Assessment Questions
3.10 References/Suggested Readings

3.0 Objectives
At the end of this chapter the reader will be able to:

• Describe Relational Model Concepts
• Describe properties of a relation and relational keys
• Describe relational model/integrity constraints
• Describe The Relational Algebra
• Introduce Oracle- A relational database management system

 1

3.1 Introduction

The principles of the relational model were first outlined by Dr. E. F. Codd in a June

1970 paper called "A Relational Model of Data for Large Shared Data Banks:' In this

paper. Dr. Codd proposed the relational model for database systems. The more popular

models used at that time were hierarchical and network, or even simple flat file data

structures. Relational database management systems (RDBMS) soon became very

popular, especially for their ease of use and flexibility in structure. In addition, a number

of innovative vendors, such as Oracle, supplemented the RDBMS \with a suite of

powerful application development and user products, providing a total solution.

Earlier we saw how to convert an unorganized text description of information

requirements into a conceptual design, by the use of ER diagrams. The advantage of ER

diagrams is that they force you to identify data requirements that are implicitly known,

but not explicitly written down in the original description. Here we will see how to

convert this ER into a logical design (this will be defined below) of a relational database.

The logical model is also called a Relational Model.

3.2 Relational Model Concepts

We shall represent a relation as a table with columns and rows. Each column of the table

has a name, or attribute. Each row is called a tuple.

• Domain: a set of atomic values that an attribute can take

• Attribute: name of a column in a particular table (all data is stored in tables).

Each attribute Ai must have a domain, dom(Ai).

• Relational Schema: The design of one table, containing the name of the table

(i.e. the name of the relation), and the names of all the columns, or attributes.

Example: STUDENT(Name, SID, Age, GPA)

• Degree of a Relation: the number of attributes in the relation's schema.

• Tuple, t, of R(A1, A2, A3, …, An): an ORDERED set of values, < v1, v2, v3,

…, vn>, where each vi is a value from dom(Ai).

 2

• Relation Instance, r(R): a set of tuples; thus, r(R) = { t1, t2, t3, …, tm}

NOTES:

1. The tuples in an instance of a relation are not considered to be ordered ��

putting the rows in a different sequence does not change the table.

2. Once the schema, R(A1, A2, A3, …, An) is defined, the values, vi, in each tuple,

t, must be ordered as t = <v1, v2, v3, …, vn>

3.2.1 Properties of relations

Properties of database relations are:

• relation name is distinct from all other relations

• each cell of relation contains exactly one atomic (single) value

• each attribute has a distinct name

• values of an attribute are all from the same domain

• order of attributes has no significance

• each tuple is distinct; there are no duplicate tuples

• order of tuples has no significance, theoretically.

3.2.2 Relational keys

There are two kinds of keys in relations. The first are identifying keys: the primary key

is the main concept, while two other keys – super key and candidate key – are related

concepts. The second kind is the foreign key.

 3

Identity Keys

Super Keys

A super key is a set of attributes whose values can be used to uniquely identify a tuple

within a relation. A relation may have more than one super key, but it always has at least

one: the set of all attributes that make up the relation.

Candidate Keys

A candidate key is a super key that is minimal; that is, there is no proper subset that is

itself a superkey. A relation may have more than one candidate key, and the different

candidate keys may have a different number of attributes. In other words, you should not

interpret 'minimal' to mean the super key with the fewest attributes.

A candidate key has two properties:

(i) in each tuple of R, the values of K uniquely identify that tuple (uniqueness)

(ii) no proper subset of K has the uniqueness property (irreducibility).

 Primary Key

The primary key of a relation is a candidate key especially selected to be the key for the

relation. In other words, it is a choice, and there can be only one candidate key designated

to be the primary key.

Relationship between identity keys

The relationship between keys:

Superkey ⊇ Candidate Key ⊇ Primary Key
Foreign keys

The attribute(s) within one relation that matches a candidate key of another relation. A

relation may have several foreign keys, associated with different target relations.

Foreign keys allow users to link information in one relation to information in another

relation. Without FKs, a database would be a collection of unrelated tables.

3.3 Relational Model Constraints

Integrity Constraints

Each relational schema must satisfy the following four types of constraints.

A. Domain constraints

Each attribute Ai must be an atomic value from dom(Ai) for that attribute.

 4

The attribute, Name in the example is a BAD DESIGN (because sometimes we may want

to search a person by only using their last name.

B. Key Constraints

Superkey of R: A set of attributes, SK, of R such that no two tuples in any valid

relational instance, r(R), will have the same value for SK. Therefore, for any two distinct

tuples, t1 and t2 in r(R),

t1[SK] != t2[SK].

Key of R: A minimal superkey. That is, a superkey, K, of R such that the removal of

ANY attribute from K will result in a set of attributes that are not a superkey.

Example CAR(State, LicensePlateNo, VehicleID, Model, Year, Manufacturer)

This schema has two keys:

K1 = { State, LicensePlateNo}

K2 = { VehicleID }

Both K1 and K2 are superkeys.

K3 = { VehicleID, Manufacturer} is a superkey, but not a key (Why?).

If a relation has more than one keys, we can select any one (arbitrarily) to be the primary

key. Primary Key attributes are underlined in the schema:

CAR(State, LicensePlateNo, VehicleID, Model, Year, Manufacturer)

C. Entity Integrity Constraints

The primary key attribute, PK, of any relational schema R in a database cannot have null

values in any tuple. In other words, for each table in a DB, there must be a key; for each

key, every row in the table must have non-null values. This is because PK is used to

identify the individual tuples.

Mathematically, t[PK] != NULL for any tuple t € r(R).

D. Referential Integrity Constraints

Referential integrity constraints are used to specify the relationships between two

relations in a database.

Consider a referencing relation, R1, and a referenced relation, R2. Tuples in the

referencing relation, R1, have attributed FK (called foreign key attributes) that reference

 5

the primary key attributes of the referenced relation, R2. A tuple, t1, in R1 is said to

reference a tuple, t2, in R2 if t1[FK] = t2[PK].

A referential integrity constraint can be displayed in a relational database schema as a

directed arc from the referencing (foreign) key to the referenced (primary) key. Examples

are shown in the figure below:

ER-to-Relational Mapping

Now we are ready to lay down some informal methods to help us create the Relational

schemas from our ER models. These will be described in the following steps:

1. For each regular entity, E, in the ER model, create a relation R that includes all

the simple attributes of E. Select the primary key for E, and mark it.

2. For each weak entity type, W, in the ER model, with the Owner entity type, E,

create a relation R with all attributes of W as attributes of W, plus the primary key

of E. [Note: if there are identical tuples in W which share the same owner tuple,

then we need to create an additional index attribute in W.]

3. For each binary relation type, R, in the ER model, identify the participating entity

types, S and T.

• For 1:1 relationship between S and T

Choose one relation, say S. Include the primary key of T as a foreign key

of S.

• For 1:N relationship between S and T

Let S be the entity on the N side of the relationship. Include the primary

key of T as a foreign key in S.

• For M: N relation between S and T

 6

Create a new relation, P, to represent R. Include the primary keys of both,

S and T as foreign keys of P.

4. For each multi-valued attribute A, create a new relation, R, that includes all

attributes corresponding to A, plus the primary key attribute, K, of the relation

that represents the entity type/relationship type that has A as an attribute.

5. For each n-ary relationship type, n > 2, create a new relation S. Include as foreign

key attributes in S the primary keys of the relations representing each of the

participating entity types. Also include any simple attributes of the n-ary

relationship type as attributes of S.

3.4 Relational Languages

We have so far considered the structure of a database; the relations and the associations

between relations. In this section we consider how useful data may be extracted and

filtered from database tables. A relational language is needed to express these queries in

a well defined way. A relational language is an abstract language which provides the

database user with an interface through which they can specify data to be retrieved

according to certain selection criteria. The two main relational languages are relational

algebra and relational calculus. Relational algebra, which we focus on here, provides the

user with a set of operators which may be used to create new (temporary) relations based

on information contained in existing relations. Relational calculus, on the other hand,

provides a set of key words to allow the user to make ad hoc inquiries.

3.5 Relational Algebra

Relational algebra is a procedural language consisting of a set of operators. Each

operator takes one or more relations as its input and produces one relation as its output.

The seven basic relational algebra operations are Selection, Projection, Joining, Union,

Intersection, Difference and Division. It is important to note that these operations do not

alter the database. The relation produced by an operation is available to the user but it is

not stored in the database by the operation.

Selection (also called Restriction)

The SELECT operator selects all tuples from some relation, so that some attributes in

each tuple satisfy some condition. A new relation containing the selected tuples is then

created as output. Suppose we have the relation STORES:

 7

The relational operation:

R l = SELECT STORES WHERE Location = 'Dublin'

selects all tuples for stores that are located in Dublin and creates the new relation R1

which appears as follows:

We can also impose conditions on more than one attribute. For example,

R2 = SELECT STORES WHERE Location = 'Dublin' AND No-Bins > 100

This operation selects only one tuple from the relation:

Projection

The projection operator constructs a new relation from some existing relation by selecting

only specified attributes of the existing relation and eliminating duplicate tuples in the

newly formed relation. For example,

R3 = PROJECT STORES OVER Store-ID, Location

results in:

 8

Given the following operation,

R4 = PROJECT STORES OVER Location

What would the relation R4 look like?

Joining

Joining is a operation for combining two relations into a single relation. At the outset,

it requires choosing the attributes to match the tuples in each relation. Tuples in

different relations but with the same value of matching attributes are combined into a

single tuple in the output relation.

For example, with a new relation ITEMS:

… and our previous STORES relation:

if we joined ITEMS to STORES using the operator:

R5 = JOIN STORES, ITEMS OVER Store-ID

the resulting relation R5 would appear as follows:

This relation resulted from a joining of ITEMS and STORES over the common attribute

Store-ID, i.e. any tuples of each relation which contained the same value of Store-ID

were joined together to form a single tuple.

 9

Joining relations together based on equality of values of common attributes is called an

equijoin. Conditions of join may be other than equality - we may also have a ‘greater-

than’ or ‘less-than’ join.

When duplicate attributes are removed from the result of an equijoin this is called an

natural join. The example above is such a natural join - as Store-ID appears only once in

the result.

Note that there is often a connection between keys (primary and foreign) and the

attributes over which a join is performed in order to amalgamate information from

multiple related tables in a database. In the above example, ITEMS.Store_ID is a foreign

key reflecting the primary key STORE.Store_ID. When we join on Store_ID the

relationship between the tables is expressed explicitly in the resulting output table. To

illustrate, the relationship between these relations can be expressed as an E-R diagram,

shown below.

Union, Intersection and Difference

These are the standard set operators. The requirement for carrying out any of these

operations is that the two operand relations are union-compatible - i.e. they have the

 10

same number of attributes (say n) and the ith attribute of each relation (i = l,…,n) must be

from the same domain (they do not have to have the same attribute names).

The UNION operator builds a relation consisting of all tuples appearing in either or both

of two specified relations.

The INTERSECT operator builds a relation consisting of all tuples appearing strictly in

both specified relations.

The DIFFERENCE operator builds a relation consisting of all tuples appearing in the

first, but not the second of two specified relations.

This may be represented diagrammatically as shown below.

As an exercise, find:

C = UNION(A,B), C = INTERSTION(A,B) and C= DIFFERENCE(A,B).

Division

In its simplest form, this operation has a binary relation R(X,Y) as the dividend and a

divisor that includes Y. The output is a set, S, , of values of X such that x € S if there is a

row (x,y) in R for each y value in the divisor.

As an example, suppose we have two relations R6 and R7:

 11

The operation:

R8 = R6 / R7

will give the result:

This is because C3 is the only company for which there is a row with Boston and New

York. The other companies, C1 and C2, do not satisfy this condition.

3.6 A Relational Database Management Systems-ORACLE
The Oracle database is a relational database system from Oracle corporation extensively

used in product and internet-based applications in different platforms. Oracle database

was developed by Larry Ellison, along with friends and former coworkers Bob Miner and

Ed Oates, who had started a consultancy called Software Development Laboratories

(SDL). They called their finished product Oracle, after the code name of a CIA-funded

project they had worked on at a previous employer, Ampex.

Oracle9i Database Rel c 2 features full XML database functionality with Oracle XML

DB, enhancements to the groundbreaking Oracle Real Application Clusters, and self-

tuning and self-management capabilities to help improve DBA productivity and

 12

efficiency. In addition, the built-in OLAP functionality has been expanded and significant

enhancements and optimizations have been made for the Windows and Linux operating

systems

Some of the Oracle database are as follows:

• Enterprise User Security -Password Based Enterprise User Security -

Administering user accounts is a very time consuming and costly activity

in many organizations. For example, users may lose their passwords,

change roles or leave the company. Without timely user administration,

the field is open for data misuse and data loss. By introducing password-

based authentication, Oracle 9i Advanced Security has improved the

ease-of-use and simplified enterprise user setup and administration.

• Oracle Partitioning -Oracle Partitioning, an option of Oracle9i Enterprise

Edition, can enhance the manageability, performance, and availability of

a wide variety of applications. Partitioning allows tables, indexes, and

index-organized tables to be subdivided into smaller pieces, enabling

these database objects to be managed and accessed at a finer level of

granularity.

• Oracle Generic Connectivity and Oracle Transparent Gateway -Oracle

offers two connectivity solutions to address the needs of disparate data

access. They are: Oracle Generic Connectivity and Oracle Transparent

Gateways. These two solutions make it possible to access any number of

non-Oracle systems from an Oracle environment in a heterogeneously

distributed environment.

• Performance Improvements -Performance is always a big issue with

databases. The biggest improvements have been to Parallel Server which

Oracle now calls Real Application Clusters and which allow applications

to use clustered servers without modification.

 13

• Security Enhancements -As the number of users increase and the

locations and types of users become more diverse, better security (and

privacy) features become essential.

3.7 Summary

1. To convert this ER into a logical design of a relational database. The logical

model is also called a Relational Model.

2. Domain: a set of atomic values that an attribute can take

3. Attribute: name of a column in a particular table (all data is stored in tables).

4. The design of one table, containing the name of the table (i.e. the name of the

relation), and the names of all the columns, or attributes is called relational

schema.

5. The number of attributes in the relation's schema is called the degree of a

relation.

6. A super key is a set of attributes whose values can be used to uniquely identify a

tuple within a relation.

7. A candidate key is a super key that is minimal; that is, there is no proper subset

that is itself a superkey.

8. The primary key of a relation is a candidate key especially selected to be the key

for the relation.

9. The attribute(s) within one relation that matches a candidate key of another

relation is called foreign key(s).

10. Each relational schema must satisfy the following four types of constraints viz.

domain constraints, key constraints, entity integrity and referential integrity

constraints.

11. Relational algebra is a procedural language consisting of a set of operators.

Each operator takes one or more relations as its input and produces one relation

as its output.

12. The seven basic relational algebra operations are Selection, Projection, Joining,

Union, Intersection, Difference and Division.

 14

3.8 Key Words

Relation, Integrity Constraints, Relational Algebra, Primary Key, Foreign Key, Super

Key, Candidate Key, Degree of a Relation, Projection, Join

3.9 Self assessment Questions

1. Explain in brief the relational approach to data base structures.

2. What is a relation? What are its characteristics?

3. Explain any three relational operators with example.

4. Explain various relational constraints with example.

5. Explain Relational Algebra.What are the relational algebra operations that can

be performed?

6. What are the advantages of Relational Model?

3.10 References/Suggested Readings

1. Date, C.J., Introduction to Database Systems (7
th

Edition) Addison Wesley, 2000
2. Leon, Alexis and Leon, Mathews, Database Management Systems, LeonTECHWorld

3. Elamasri R . and Navathe, S., Fundamentals of Database Systems (3
rd

Edition),
Pearsson Education, 2000.

 15

MCA 202/MS 11

Author: Abhishek Taneja Vetter: Prof. Dharminder Kumar
Lesson: SQL Lesson No. : 04

Structure
4.0 Objectives
4.1 Introduction and History
4.2 What is SQL?
4.3 SQL Commands
4.4 Data Definition Language (DDL) in SQL
4.5 Data Manipulation Language in SQL (DML)
4.6 Transaction Control Language in SQL(TCL)
4.7 Constraints in SQL
4.8 Indexes in SQL
4.9 Summary
4.10 Key Words
4.11 Self Assessment Questions
4.12 References/Suggested Readings

4.0 Objectives
At the end of this chapter the reader will be able to:

• Describe history of SQL
• Describe various SQL commands
• Define characteristics of SQL commands
• Describe DDL,DML and DCL commands
• Describe constraints and indexes in SQL

 1

4.1 Introduction and History

In this chapter we want to emphasize that SQL is both deep and wide. Deep in the sense

that it is implemented at many levels of database communication, from a simple Access

form list box right up to high-volume communications between mainframes. SQL is

widely implemented in that almost every DBMS supports SQL statements for

communication. The reason for this level of acceptance is partially explained by the

amount of effort that went into the theory and development of the standards.

Current State

So the ANSI-SQL group has published three standards over the years:

• SQL89 (SQL1)

• SQL92 (SQL2)

• SQL99 (SQL3)

The vast majority of the language has not changed through these updates. We can all

profit from the fact that almost all of the code we wrote to SQL standards of 1989 is still

perfectly usable. Or in other words, as a new student of SQL there is over ten years of

SQL code out there that needs your expertise to maintain and expand. 1

Most DBMS are designed to meet the SQL92 standard. Virtually all of the material in

this book was available in the earlier standards as well. Since many of the advanced

features of SQL92 have yet to be implemented by DBMS vendors, there has been little

pressure for a new version of the standard. Nevertheless a SQL99 standard was

developed to address advanced issues in SQL. All of the core functions of SQL, such as

adding, reading and modifying data, are the same. Therefore, the topics in this book are

not affected by the new standard. As of early 2001, no vendor has implemented the

SQL99 standard.

There are three areas where there is current development in SQL standards. First entails

improving Internet access to data, particularly to meet the needs of the emerging XML

standards. Second is integration with Java, either through Sun's Java Database

 2

Connectivity (JDBC) or through internal implementations. Last, the groups that establish

SQL standards are considering how to integrate object- based programming models.

4.2 What is SQL?

Structured Query Language, commonly abbreviated to SQL and pronounced as “sequel”,

is not a conventional computer programming language in the normal sense of the phrase.

It allows users to access data in relational database management systems. SQL is about

data and results, each SQL statement returns a result, whether that result be a query, an

update to a record or the creation of a database table. SQL is most often used to address a

relational database, which is what some people refer to as a SQL database.So in brief we

can describe SQL as follows:

 • SQL stands for Structured Query Language

 • SQL allows you to access a database

 • SQL can execute queries against a database

 • SQL can retrieve data from a database

 • SQL can insert new records in a database

 • SQL can delete records from a database

 • SQL can update records in a database

 • SQL is easy to learn

Creating a Database

Many database systems have graphical interfaces which allow developers (and users) to

create, modify and otherwise interact with the underlying database management system

(DBMS). However, for the purposes of this chapter all interactions with the DBMS will

be via SQL commands rather than via menus.

4.3 SQL Commands

There are three groups of commands in SQL:

 1. Data Definition

 3

 2. Data Manipulation and

 3. Transaction Control

4.3.1 Characteristics of SQL Commands

Here you can see that SQL commands follow a number of basic rules:

 • SQL keywords are not normally case sensitive, though this in this tutorial all

commands (SELECT, UPDATE etc) are upper-cased.

 • Variable and parameter names are displayed here as lower-case.

 • New-line characters are ignored in SQL, so a command may be all on one line

or broken up across a number of lines for the sake of clarity.

 • Many DBMS systems expect to have SQL commands terminated with a semi-

colon character.

4.4 Data Definition Language (DDL) in SQL

The Data Definition Language (DDL) part of SQL permits database tables to be created

or deleted. We can also define indexes (keys), specify links between tables, and impose

constraints between database tables.

The most important DDL statements in SQL are:

• CREATE TABLE - creates a new database table

• ALTER TABLE - alters (changes) a database table

• DROP TABLE - deletes a database table

How to create table

Creating a database is remarkably straightforward. The SQL command which you have to

give is just:

CREATE DATABASE dbname;

In this example you will call the database GJUniv, so the command which you have to

give is:

 4

CREATE DATABASE GJUniv;

Once the database is created it, is possible to start implementing the design sketched out

previously.

So you have created the database and now it's time to use some SQL to create the tables

required by the design. Note that all SQL keywords are shown in upper case, variable

names in a mixture of upper and lower case.

The SQL statement to create a table has the basic form:

CREATE TABLE name(col1 datatype, col2 datatype, …);

So, to create our User table we enter the following command:

CREATE TABLE User (FirstName TEXT, LastName TEXT, UserID TEXT, Dept

TEXT, EmpNo INTEGER, PCType TEXT);

The TEXT datatype, supported by many of the most common DBMS, specifies a string

of characters of any length. In practice there is often a default string length which varies

by product. In some DBMS TEXT is not supported, and instead a specific string length

has to be declared. Fixed length strings are often called CHAR(x), VCHAR(x) or

VARCHAR(x), where x is the string length. In the case of INTEGER there are often

multiple flavors of integer available. Remembering that larger integers require more bytes

for data storage, the choice of int size is usually a design decision that ought to be made

up front.

How to Modify table

Once a table is created it's structure is not necessarily fixed in stone. In time requirements

change and the structure of the database is likely to evolve to match your wishes. SQL

can be used to change the structure of a table, so, for example, if we need to add a new

field to our User table to tell us if the user has Internet access, then we can execute an

SQL ALTER TABLE command as shown below:

ALTER TABLE User ADD COLUMN Internet BOOLEAN;

To delete a column the ADD keyword is replaced with DROP, so to delete the field we

have just added the SQL is:

 5

ALTER TABLE User DROP COLUMN Internet;

How to delete table

If you have already executed the original CREATE TABLE command your database will

already contain a table called User, so let's get rid of that using the DROP command:

DROP TABLE User;

And now we'll recreate the User table we'll use throughout the rest of this tutorial:

CREATE TABLE User (FirstName VARCHAR (20), LastName VARCHAR (20),

UserID VARCHAR(12) UNIQUE, Dept VARCHAR(20), EmpNo INTEGER

UNIQUE, PCType VARCHAR(20);

4.5 Data Manipulation Language in SQL (DML)

SQL language also includes syntax to update, insert, and delete records. These query and

update commands together form the Data Manipulation Language (DML) part of SQL:

• INSERT INTO - inserts new data into a database table

• UPDATE - updates data in a database table

• DELETE - deletes data from a database table

• SELECT - extracts data from a database table

How to Insert Data

Having now built the structure of the database it is time to populate the tables with some

data. In the vast majority of desktop database applications data entry is performed via a

user interface built around some kind of GUI form. The form gives a representation of the

information required for the application, rather than providing a simple mapping onto the

tables. So, in this sample application you would imagine a form with text boxes for the

user details, drop-down lists to select from the PC table, drop-down selection of the

software packages etc. In such a situation the database user is shielded both from the

underlying structure of the database and from the SQL which may be used to enter data

into it. However we are going to use the SQL directly to populate the tables so that we

can move on to the next stage of learning SQL.

The command to add new records to a table (usually referred to as an append query), is:

 6

INSERT INTO target [(field1[, field2[, ...]])]

VALUES (value1[, value2[, ...]);

So, to add a User record for user Jim Jones, we would issue the following INSERT query:

INSERT INTO User (FirstName, LastName, UserID, Dept, EmpNo, PCType) 6

VALUES ("Jim", "Jones", "Jjones","Finance", 9, "DellDimR450");

Obviously populating a database by issuing such a series of SQL commands is both

tedious and prone to error, which is another reason why database applications have front-

ends. Even without a specifically designed front-end, many database systems - including

MS Access - allow data entry direct into tables via a spreadsheet-like interface.

The INSERT command can also be used to copy data from one table into another. For

example, The SQL query to perform this is:

INSERT INTO User (FirstName, LastName, UserID, Dept, EmpNo, PCType,

Internet)

SELECT FirstName, LastName, UserID, Dept, EmpNo, PCType, Internet

FROM NewUsers;

How to Update Data

The INSERT command is used to add records to a table, but what if you need to make an

amendment to a particular record? In this case the SQL command to perform updates is

the UPDATE command, with syntax:

UPDATE table

SET newvalue

WHERE criteria;

For example, let's assume that we want to move user Jim Jones from the Finance

department to Marketing. Our SQL statement would then be:

UPDATE User

SET Dept="Marketing"

WHERE EmpNo=9;

 7

Notice that we used the EmpNo field to set the criteria because we know it is unique. If

we'd used another field, for example LastName, we might have accidentally updated the

records for any other user with the same surname.

The UPDATE command can be used for more than just changing a single field or record

at a time. The SET keyword can be used to set new values for a number of different

fields, so we could have moved Jim Jones from Finance to marketing and changed the

PCType as well in the same statement (SET Dept="Marketing", PCType="PrettyPC"). Or

if all of the Finance department were suddenly granted Internet access then we could

have issued the following SQL query:

UPDATE User

SET Internet=TRUE

WHERE Dept="Finance";

You can also use the SET keyword to perform arithmetical or logical operations on the

values. For example if you have a table of salaries and you want to give everybody a 10%

increase you can issue the following command:

UPDATE PayRoll

SET Salary=Salary * 1.1;

How to Delete Data

Now that we know how to add new records and to update existing records it only remains

to learn how to delete records before we move on to look at how we search through and

collate data. As you would expect SQL provides a simple command to delete complete

records. The syntax of the command is:

DELETE [table.*]

FROM table

WHERE criteria;

Let's assume we have a user record for John Doe, (with an employee number of 99),

which we want to remove from our User we could issue the following query:

DELETE *

FROM User

 8

WHERE EmpNo=99;

In practice delete operations are not handled by manually keying in SQL queries, but are

likely to be generated from a front end system which will handle warnings and add safe-

guards against accidental deletion of records.

Note that the DELETE query will delete an entire record or group of records. If you want

to delete a single field or group of fields without destroying that record then use an

UPDATE query and set the fields to Null to over-write the data that needs deleting. It is

also worth noting that the DELETE query does not do anything to the structure of the

table itself, it deletes data only. To delete a table, or part of a table, then you have to use

the DROP clause of an ALTER TABLE query.

4.6 Transaction Control Language in SQL(TCL)

The SQL Data Control Language (DCL) provides security for your database. The DCL

consists of the GRANT, REVOKE, COMMIT, and ROLLBACK statements. GRANT

and REVOKE statements enable you to determine whether a user can view, modify, add,

or delete database information.

Working with transaction control

Applications execute a SQL statement or group of logically related SQL statements to

perform a database transaction. The SQL statement or statements add, delete, or modify

data in the database.

Transactions are atomic and durable. To be considered atomic, a transaction must

successfully complete all of its statements; otherwise none of the statements execute. To

be considered durable, a transaction's changes to a database must be permanent.

Complete a transaction by using either the COMMIT or ROLLBACK statements.

COMMIT statements make permanent the changes to the database created by a

transaction. ROLLBACK restores the database to the state it was in before the transaction

was performed.

SQL Transaction Control Language Commands (TCL.)

 9

This page contains some SQL TCL. commands that I think it might be useful. Each

command's description is taken and modified from the SQLPlus help. They are provided

as is and most likely are partially described. So, if you want more detail or other

commands, please use HELP in the SQLPlus directly.

COMMIT

PURPOSE:

To end your current transaction and make permanent all changes performed in the

transaction. This command also erases all savepoints in the transaction and releases the

transaction's locks. You can also use this command to manually commit an in-doubt

distributed transaction.

SYNTAX:

COMMIT [WORK]

[COMMENT 'text'

| FORCE 'text' [, integer]]

Where:

• WORK : is supported only for compliance with standard SQL. The statements

COMMIT and COMMIT WORK are equivalent.

• COMMENT : specifies a comment to be associated with the current transaction.

The 'text' is a quoted literal of up to 50 characters that Oracle stores in the data

dictionary view DBA_2PC_PENDING along with the transaction ID if the

transaction becomes in-doubt.

• FORCE : manually commits an in-doubt distributed transaction. The transaction

is identified by the 'text' containing its local or global transaction ID. To find the

IDs of such transactions, query the data dictionary view DBA_2PC_PENDING.

You can also use the integer to specifically assign the transaction a system change

number (SCN). If you omit the integer, the transaction is committed using the

current SCN.

COMMIT statements using the FORCE clause are not supported in PL/SQL.

 10

PREREQUISITES:

You need no privileges to commit your current transaction. To manually commit a

distributed in-doubt transaction that you originally committed, you must have FORCE

TRANSACTION system privilege. To manually commit a distributed in-doubt

transaction that was originally committed by another user, you must have FORCE ANY

TRANSACTION system privilege.

Example:

To commit your current transaction, enter

SQL> COMMIT WORK;

Commit complete.

ROLLBACK

PURPOSE:

To undo work done in the current transaction. You can also use this command to

manually undo the work done by an in-doubt distributed transaction.

SYNTAX:

ROLLBACK [WORK]

[TO [SAVEPOINT] savepoint

| FORCE 'text']

Where:

• WORK : is optional and is provided for ANSI compatibility.

• TO : rolls back the current transaction to the specified savepoint. If you omit this

clause, the ROLLBACK statement rolls back the entire transaction.

• FORCE : manually rolls back an in-doubt distributed transaction. The transaction

is identified by the 'text' containing its local or global transaction ID. To find the

IDs of such transactions, query the data dictionary view DBA_2PC_PENDING.

ROLLBACK statements with the FORCE clause are not supported in PL/SQL.

 11

PREREQUISITES: To roll back your current transaction, no privileges are necessary.

To manually roll back an in-doubt distributed transaction that you originally committed,

you must have FORCE TRANSACTION system privilege. To manually roll back an in-

doubt distributed transaction originally committed by another user, you must have

FORCE ANY TRANSACTION system privilege.

Example:

To rollback your current transaction, enter

SQL> ROLLBACK;

Rollback complete.

Creating users

This section covers the following information:

• Creating database administrators

• Creating users

 The CREATE statement is not a part of the Data Control Language, but rather the Data

Definition Language. This chapter addresses the CREATE statement as it relates to the

creation of database administrators and users.

Creating database administrators

Database security is defined and controlled by database administrators (DBAs). Within

the scope of database security, DBAs are responsible for:

• Adding users.

• Deleting users.

• Permitting access to specific database objects.

• Limiting or prohibiting access to database objects.

 12

• Granting users privileges to view or modify database objects.

• Modifying or revoking privileges that have been granted to the users.

A user who initially creates a database becomes its default administrator. Therefore, this

initial user has the authority to create other administrator accounts for that particular

database. OpenEdge Studio offers two methods for creating DBAs:

• In SQL, the DBA uses the CREATE statement to create a user and then uses the

GRANT statement to provide the user with administrative privileges.

• In Progress 4GL, a DBA uses the Data Administration Tool to create other

administrators.

Creating users

Use the following syntax to employ the CREATE USER statement:

Syntax

CREATE USER 'username', 'password' ;

In Example 4-1, an account with DBA privileges creates the 'username' 'GPS' with

'password' 'star'.

Example 4-1: CREATE USER statement

CREATE USER 'GPS', 'star';

A user's password can be changed easily by using the ALTER USER statement:

Syntax

ALTER USER 'username', 'old_password', 'new_password';

Example 4-2 demonstrates the use of the ALTER USER statement.

Example 4-2: ALTER USER statement

 13

ALTER USER 'GPS', 'star', 'star1';

• When users are created, the default DBA (the user who created the database)

becomes disabled. It is important to grant DBA access to at least one user so you

will have a valid DBA account.

• The user's password can be easily changed using the ALTER USER statement.

Granting privileges

This section covers the following information:

• Privilege basics

• GRANT statement

Privilege basics

There are two types of privileges¾those granted on databases and those granted on

tables, views, and procedures.

Privileges for databases:

• Granting or restricting system administration privileges (DBA).

• Granting or restricting general creation privileges on a database (RESOURCE).

Privileges granted on tables, views, and procedures grant or restrict operations on specific

operations, such as:

• Altering an object definition.

• Deleting, inserting, selecting and updating records.

• Executing stored procedures.

• Granting privileges.

• Defining constraints to an existing table.

 14

GRANT statement

The GRANT statement can be used to provide the user with two different types of

privileges:

 • Database-wide privileges

 • Table-specific privileges

Database-wide privileges

Database-wide privileges grant the user either DBA or RESOURCE privileges. Users

with DBA privileges have the ability to access, modify, or delete a database object and to

grant privileges to other users. RESOURCE privileges allow a user to create database

objects.

The GRANT statement syntax for granting RESOURCE or DBA privileges is:

Syntax

GRANT {RESOURCE, DBA }

TO username [, username], ... ;

The following statement provides resource privileges to user 'GSP'.

Example 4-3: GRANT RESOURCE statement

GRANT RESOURCE TO 'GSP';

In this case, GSP is granted the privilege to issue CREATE statements, and can therefore

add objects, such as tables, to the database.

Table-specific privileges can be granted to users so they can view, add, delete, or create

indexes for data within a table. Privileges can also be granted to allow users to refer to a

table from another table's constraint definitions.

The GRANT statement syntax for granting table-specific privileges is:

 15

Syntax

GRANT {privilege [, privilege], ... |ALL}

ON table_name

TO {username [, username], ... | PUBLIC}

[WITH GRANT OPTION] ;

This is the syntax for the privilege value:

Syntax

{ SELECT | INSERT | DELETE | INDEX

| UPDATE [(column , column , ...)]

| REFERENCES [(column , column , ...)] }

In this instance, a DBA restricts the types of activities a user is allowed to perform on a

table. In the following example, 'GSP' is given permission to update the item name, item

number, and catalog descriptions found in the item table.

Note: By employing the WITH GRANT OPTION clause, you enable a user to grant the

same privilege he or she has been granted to others. This clause should be used carefully

due to its ability to affect database security.

Example 4-4 illustrates the granting of table-specific privileges:

Example 4-4: GRANT UPDATE statement

GRANT UPDATE

ON Item (ItemNum, ItemName, CatDescription)

TO 'GSP';

The GRANT UPDATE statement has limited GSP's ability to interact with the item table.

Now, if GSP attempts to update a column to which he has not been granted access, the

database will return the error message in Example 4-5:

 16

Example 4-5: SQL error message

=== SQL Exception 1 ===

SQLState=HY000

ErrorCode=-20228

[JDBC Progress Driver}:Access Denied (Authorisation

failed) (7512)

Granting public access

The GRANT statement can be easily modified to make previously restricted columns

accessible to the public, as in Example 4-6.

Example 4-6: Granting update privilege to public

GRANT UPDATE

ON Item (ItemNum, ItemName, CatDescription)

TO PUBLIC;

Revoking privileges

The REVOKE statement can be used for a wide variety of purposes. It can revoke a

single user's access to a single column or it can revoke the public's privilege to access an

entire database.

Privileges are revoked in the same manner in which they are granted_database-wide or

table-specific.

The syntax for using the REVOKE statement to revoke database-wide privileges is:

Syntax

 17

REVOKE {RESOURCE, DBA}

FROM {username [, username], ...};

The syntax for using the REVOKE statement to revoke table-specific privileges is:

Syntax

REVOKE [GRANT OPTION FOR] {privilege [, privilege], ... |ALL

[PRIVILEGES]} ON table_name

FROM {username[,username], ... |PUBLIC} [RESTRICT|CASCADE];

where privilege is:

{EXECUTE|SELECT|INSERT|DELETE|INDEX|UPDATE [(COLUMN,

COLUMN, ...)]|

REFERENCES [(COLUMN, COLUMN, ...)]}

The REVOKE statement can be used to remit the privileges previously granted to 'GPS'

as shown in Example 4-7.

Example 4-7: REVOKE statement

REVOKE UPDATE

ON Item (ItemNum, ItemName, CatDescription)

FROM "GPS"

If the REVOKE statement specifies RESTRICT, SQL checks if the privilege being

revoked was passed on to other users. This is possible only if the original privilege

included the WITH GRANT OPTION clause. If so, the REVOKE statement fails and

generates an error. If the privilege was not passed on, the REVOKE statement succeeds.

 18

If the REVOKE statement specifies CASCADE, revoking the access privileges from a

user also revokes the privileges from all users who received the privilege from that user.

If the REVOKE statement specifies neither RESTRICT nor CASCADE, the behavior is

the same as for CASCADE.

4.7 Constraints in SQL

Data types are a way to limit the kind of data that can be stored in a table. For many

applications, however, the constraint they provide is too coarse. For example, a column

containing a product price should probably only accept positive values. But there is no

data type that accepts only positive numbers. Another issue is that you might want to

constrain column data with respect to other columns or rows. For example, in a table

containing product information, there should only be one row for each product number.

To that end, SQL allows you to define constraints on columns and tables. Constraints

give you as much control over the data in your tables as you wish. If a user attempts to

store data in a column that would violate a constraint, an error is raised. This applies even

if the value came from the default value definition.

4.7.1 Check Constraints

A check constraint is the most generic constraint type. It allows you to specify that the

value in a certain column must satisfy an arbitrary expression. For instance, to require

positive product prices, you could use:

CREATE TABLE products (product_no integer, name text, price numeric CHECK

(price > 0));

As you see, the constraint definition comes after the data type, just like default value

definitions. Default values and constraints can be listed in any order. A check constraint

consists of the key word CHECK followed by an expression in parentheses. The check

constraint expression should involve the column thus constrained, otherwise the

constraint would not make too much sense.

4.7.2 Not-Null Constraints

A not-null constraint simply specifies that a column must not assume the null value. A

syntax example:

 19

CREATE TABLE products (product_no integer NOT NULL, name text NOT

NULL, price numeric);

A not-null constraint is always written as a column constraint. A not-null constraint is

functionally equivalent to creating a check constraint CHECK (column_name IS NOT

NULL), but in PostgreSQL creating an explicit not-null constraint is more efficient. The

drawback is that you cannot give explicit names to not-null constraints created that way.

4.7.3 Unique Constraints

Unique constraints ensure that the data contained in a column or a group of columns is

unique with respect to all the rows in the table. The syntax is

CREATE TABLE products (product_no integer UNIQUE, name text, price

numeric);

when written as a column constraint, and

CREATE TABLE products (product_no integer, name text, price

numeric,UNIQUE (product_no));

when written as a table constraint.

4.7.4 Primary Key Constraints

Technically, a primary key constraint is simply a combination of a unique constraint and

a not-null constraint. So, the following two table definitions accept the same data:

CREATE TABLE products (product_no integer UNIQUE NOT NULL, name text,

 price numeric);

CREATE TABLE products (product_no integer PRIMARY KEY,name text,

 price numeric);

Primary keys can also constrain more than one column; the syntax is similar to unique

constraints:

CREATE TABLE example (a integer,b integer,c integer, PRIMARY KEY (a, c));

A primary key indicates that a column or group of columns can be used as a unique

identifier for rows in the table. (This is a direct consequence of the definition of a primary

key. Note that a unique constraint does not, in fact, provide a unique identifier because it

does not exclude null values.) This is useful both for documentation purposes and for

 20

client applications. For example, a GUI application that allows modifying row values

probably needs to know the primary key of a table to be able to identify rows uniquely.

4.7.5 Foreign Keys Constraints

A foreign key constraint specifies that the values in a column (or a group of columns)

must match the values appearing in some row of another table. We say this maintains the

referential integrity between two related tables.

Say you have the product table that we have used several times already:

CREATE TABLE products (product_no integer PRIMARY KEY, name text,

 price numeric);

Let's also assume you have a table storing orders of those products. We want to ensure

that the orders table only contains orders of products that actually exist. So we define a

foreign key constraint in the orders table that references the products table:

CREATE TABLE orders (order_id integer PRIMARY KEY,product_no integer

REFERENCES products (product_no), quantity integer);

Now it is impossible to create orders with product_no entries that do not appear in the

products table.

We say that in this situation the orders table is the referencing table and the products table

is the referenced table. Similarly, there are referencing and referenced columns.

4.8 Indexes in SQL

Relational databases like SQL Server use indexes to find data quickly when a query is

processed. Creating and removing indexes from a database schema will rarely result in

changes to an application's code; indexes operate 'behind the scenes' in support of the

database engine. However, creating the proper index can drastically increase the

performance of an application.

The SQL Server engine uses an index in much the same way a reader uses a book index.

For example, one way to find all references to INSERT statements in a SQL book would

be to begin on page one and scan each page of the book. We could mark each time we

find the word INSERT until we reach the end of the book. This approach is pretty time

consuming and laborious. Alternately, we can also use the index in the back of the book

 21

to find a page number for each occurrence of the INSERT statements. This approach

produces the same results as above, but with tremendous savings in time.

When a SQL Server has no index to use for searching, the result is similar to the reader

who looks at every page in a book to find a word: the SQL engine needs to visit every

row in a table. In database terminology we call this behavior a table scan, or just scan.

A table scan is not always a problem, and is sometimes unavoidable. However, as a table

grows to thousands of rows and then millions of rows and beyond, scans become

correspondingly slower and more expensive.

Consider the following query on the Products table of the Northwind database. This

query retrieves products in a specific price range.

SELECT ProductID, ProductName, UnitPrice

 FROM Products WHERE (UnitPrice > 12.5) AND (UnitPrice < 14)

There is currently no index on the Product table to help this query, so the database engine

performs a scan and examines each record to see if UnitPrice falls between 12.5 and 14.

In the diagram below, the database search touches a total of 77 records to find just three

matches.

Now imagine if we created an index, just like a book index, on the data in the UnitPrice

column. Each index entry would contain a copy of the UnitPrice value for a row, and a

reference (just like a page number) to the row where the value originated. SQL will sort

these index entries into ascending order. The index will allow the database to quickly

 22

narrow in on the three rows to satisfy the query, and avoid scanning every row in the

table.

We can create the same index using the following SQL. The command specifies the name

of the index (IDX_UnitPrice), the table name (Products), and the column to index

(UnitPrice).

CREATE INDEX [IDX_UnitPrice] ON Products (UnitPrice)

How It Works

The database takes the columns specified in a CREATE INDEX command and sorts the

values into a special data structure known as a B-tree. A B-tree structure supports fast

searches with a minimum amount of disk reads, allowing the database engine to quickly

find the starting and stopping points for the query we are using.

Conceptually, we may think of an index as shown in the diagram below. On the left, each

index entry contains the index key (UnitPrice). Each entry also includes a reference

(which points) to the table rows which share that particular value and from which we can

retrieve the required information.

Much like the index in the back of a book helps us to find keywords quickly, so the

database is able to quickly narrow the number of records it must examine to a minimum

by using the sorted list of UnitPrice values stored in the index. We have avoided a table

 23

scan to fetch the query results. Given this sketch of how indexes work, lets examine some

of the scenarios where indexes offer a benefit.

4.9 Summary

1. SQL allows users to access data in relational database management systems

2. There are three groups of SQL commands viz., DDL, DML and DCL.

3. The Data Definition Language (DDL) part of SQL permits database tables to be

created or deleted.

4. SQL language also includes syntax to update, insert, and delete records. These

query and update commands together form the Data Manipulation Language

(DML) part of SQL.

5. The SQL Data Control Language (DCL) provides security for your database.

The DCL consists of the GRANT, REVOKE, COMMIT, and ROLLBACK

statements.

6. Constraints are a way to limit the kind of data that can be stored in a table.

7. Relational databases like SQL Server use indexes to find data quickly when a

query is processed.

4.10 Key Words

SQL, DDL, DML, DCL, Constraints, Indexes

4.11 Self Assessment Questions

1)What does SQL stand for?

2) What SQL statement is used to delete table “Student”?

3) How can you insert a new record in table “Department”

4) With SQL, how can you insert "GJU" as the "FName" in the "University" table?

5) How can you delete a record from table “student” where “RollNo”=GJU501?

6) Explain the use of Grant And Revoke Commands?

7) What are Transaction Control Language Commands?

8) Explain the ways to create a new user?

4.12 References/Suggested Readings

1. www.microsoft.com
2. Sams Teach Yourself Microsoft SQL Server 2000 in 21 Days by Richard

Waymire, Rick Sawtell

 24

3. Microsoft SQL Server 7.0 Programming Unleashed by John Papa, et al 20
4. Microsoft Sql Server 7.0 Resource Guide by Microsoft Corporation
5. http://www.cs.rpi.edu/~temtanay/dbf-fall97/oracle/sql_ddcmd.html

 25

	Disadvantages of a DBMS
	Chapter 4.pdf
	Creating users
	Creating database administrators
	Creating users
	Syntax
	Syntax

	Granting privileges
	Privilege basics
	GRANT statement
	Database-wide privileges
	Syntax
	Syntax

	Granting public access

	Revoking privileges
	Syntax
	Syntax

